S1

Supplementary Information

Selective and efficient detection of Pb²⁺ in aqueous solution by lanthanoidsorganic frameworks bearing Pyridine-3, 4-dicarboxylic acid and glutaric acid

Zaib ul Nisa^a, Nargis Akhter Ashashi^a, Richa Singhaal^a, Musheer Ahmad^b, Rosa M. Gomila^c,

Antonio Frontera^c, Haq Nawaz Sheikh^{a,*}

^aDepartment of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu 180006, India

^bDepartment of Applied Chemistry, Faculty of Engineering & Technology, Aligarh Muslim

University, Aligarh, 202002, India

^cDepartment of Chemistry, Universitat de les Illes Balears, Crts de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain

CONTENTS	Page Number
1. X-Ray Crystal structures of MOFs 1-5	\$2-\$7
2. Characterization by FTIR, PXRD, HSA, TGA/dTG, BET	
3. Crystallographic Information (Tables)	S13–S23
4. PreviousMOF-based sensors for Pb ²⁺ detection Table	S24
5.Stern -Volmer Constants, Quenching Efficiencies and LODs Tab	le S24

1. X-Ray Crystal structures of Ln-MOFs 1-5

Figure S1. Shape of MOFs analyzed by Shape software

Fig. S2 Pictographic representation of the crystal structure of Ln-MOF 2; (a) ORTEP view of the structural unit (the thermal displacement ellipsoids are drawn at 50% probability; H atoms are omitted for structural clarity); (b) Asymmetric unit of MOF 2 showing the coordination environment at the Nd site (guest solvent molecules are omitted for clarity); (c) MFF (muffin) polyhedral geometry around the Nd1 center (d) Representation of dinuclear Nd₂O₁₆ SBU of Ln-MOF2

Figure S3. SBU of MOF **1**(Pr...Pr = 4.322 Å)

Figure S4. SBU of MOF **3**(Sm...Sm = 4.280 Å)

Figure S5. SBU of MOF **4**(Eu...Eu = 4.264 Å)

Figure S6. SBU of MOF **5**(Tb...Tb = 4.246 Å)

Figure S6. Presentation of the anionic portion of MOF **2** along the a-axis showing the R_2^2 (34) and R_2^2 (16) synthons.

Figure S7. Hydrogen boding position of MOF2

2. Characterization by FTIR, PXRD, HSA, TGA

Figure S8. FTIR spectra of MOFs 1-5

Figure S9. Experimental and simulated PXRD Patterns MOFs1-5

Thermogravimetric analysis

The obtained TGA curves, shown in Fig. S9-S10, suggest that complexes have typically four steps weight loss of as-prepared MOFs sample with increasing temperature. The first mass loss is about 5.62% (calculated 5.70%) below 135 °C, which can be attributed to the removal of one coordinated water molecule. The second weight loss between 135 and 325 °C is 5.67% (calculated 6.67%) resulting from the loss of second coordinated water molecule. With the increasing temperature, the mass loss of step three 3 is 25.63% from 325 C to 460 °C may be attributed to the loss of oxygen containing ligands and then decomposition of aromatic rings in fourth step. In addition, a temperature of 500 °C was found to be enough to remove all the organic frameworks and form metal oxides.¹⁻³

Figure S10. TGA curve and dTG curves for MOF 1-MOF 5

Figure S11. Nitrogen gas sorption isotherm at 77K for the activated Ln-MOF 2

Figure S12. The semitransparent HSA drawn on fragments of MOF1 (a) mapped with the d_{norm} (left)function (b) d_e (right). Regions of the most important intermolecularcontacts are indicated with arrows. Redovals indicate regions in which HS are "perforated" by coordinationbonds. Fingerprint plots of MOF1 showing the percentages of contacts to the total Hirshfeld surface area of molecules

Figure S13. Lifetime curves of MOFs 4 and 5

Figure S13. Selectivity experiment for Pb^{2+} in the presence of other metal ions for MOF 4 and MOF 5.

Figure S13. PXRD patterns of MOFs 4 and 5 as-synthesized and in water after 24 h

3. CrystallographicInformation (Tables)

Table S1. Selected Bond lengths (Å) for MOF 1.

O1—Pr1	2.464 (5)	O2W—Pr1	2.477 (5)
O1—Pr1 ⁱ	2.661 (5)	O4—Pr1 ⁱⁱ	2.539 (5)
O2—Pr1 ⁱ	2.553 (5)	O5—Pr1	2.496 (5)
O1W—Pr1	2.401 (4)	O6—Pr1	2.516 (6)
O3—Pr1 ⁱⁱ	2.495 (5)		

Symmetry code(s): (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.

Table S2. Selected Bond angles (Å) for MOF 1.				
O1W—Pr1—O1	84.50 (19)	O3 ⁱⁱⁱ —Pr1—O4 ⁱⁱⁱ	51.98 (14)	
O1W—Pr1—O2W	75.87 (18)	O5—Pr1—O4 ⁱⁱⁱ	74.46 (19)	
O1—Pr1—O2W	80.3 (2)	O6—Pr1—O4 ⁱⁱⁱ	113.85 (18)	
O1W—Pr1—O3 ⁱⁱⁱ	126.89 (16)	O1W—Pr1—O2 ⁱ	147.2 (2)	
O1—Pr1—O3 ⁱⁱⁱ	78.09 (15)	O1—Pr1—O2 ⁱ	114.75 (15)	
O2W—Pr1—O3 ⁱⁱⁱ	146.23 (18)	O2W—Pr1—O2 ⁱ	81.4 (2)	
O1W—Pr1—O5	99.5 (2)	O3 ⁱⁱⁱ —Pr1—O2 ⁱ	84.43 (16)	
O1—Pr1—O5	152.71 (16)	O5—Pr1—O2 ⁱ	75.75 (19)	
O2W—Pr1—O5	126.9 (2)	O6—Pr1—O2 ⁱ	73.02 (18)	

O3 ⁱⁱⁱ —Pr1—O5	78.05 (17)	O4 ⁱⁱⁱ —Pr1—O2 ⁱ	131.07 (17)
O1W—Pr1—O6	78.9 (2)	O1W—Pr1—O1 ⁱ	138.65 (16)
O1—Pr1—O6	154.23 (15)	O1—Pr1—O1 ⁱ	65.07 (16)
O2W—Pr1—O6	76.6 (2)	O2W—Pr1—O1 ⁱ	72.08 (17)
O3 ⁱⁱⁱ —Pr1—O6	127.68 (16)	$O3^{iii}$ — $Pr1$ — $O1^i$	75.37 (14)
O5—Pr1—O6	51.12 (16)	$O5$ — $Pr1$ — $O1^i$	120.55 (18)
O1W—Pr1—O4 ⁱⁱⁱ	75.94 (16)	06—Pr1—01 ⁱ	117.18 (17)
O1—Pr1—O4 ⁱⁱⁱ	80.48 (17)	O4 ⁱⁱⁱ —Pr1—O1 ⁱ	122.04 (16)
O2W—Pr1—O4 ⁱⁱⁱ	147.1 (2)	O2 ⁱ —Pr1—O1 ⁱ	49.70 (15)

Symmetry code(s): (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y, z.

Table S3. Selected Bond leng	gths (Å) for MOF 2.		
O1—Nd1	2.481 (6)	O4—Nd1	2.503 (7)
O2—Nd1	2.528 (6)	O5—Nd1 ⁱ	2.453 (6)
O1W—Nd1	2.393 (6)	O5—Nd1 ⁱⁱ	2.645 (6)
O3—Nd1	2.481 (7)	O6—Nd1 ⁱⁱ	2.538 (6)
O2W—Nd1	2.457 (7)		

Symmetry code(s): (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*, -*z*+1.

Table S4. Selected Bond angles (Å) for MOF 2.			
Nd1 ⁱ —O5—Nd1 ⁱⁱ	115.1 (2)	O1—Nd1—O2	52.34 (19)

S16

O1W—Nd1—O5 ⁱⁱⁱ	84.4 (2)	O3—Nd1—O2	74.3 (2)
O1W—Nd1—O2W	76.2 (2)	O4—Nd1—O2	114.0 (2)
O5 ⁱⁱⁱ —Nd1—O2W	80.1 (3)	O1W—Nd1—O6 ⁱⁱ	147.5 (3)
O1W—Nd1—O1	127.1 (2)	O5 ⁱⁱⁱ —Nd1—O6 ⁱⁱ	114.8 (2)
O5 ⁱⁱⁱ —Nd1—O1	78.5 (2)	O2W—Nd1—O6 ⁱⁱ	81.4 (3)
O2W—Nd1—O1	145.9 (2)	O1—Nd1—O6 ⁱⁱ	83.9 (2)
O1W—Nd1—O3	99.2 (3)	O3—Nd1—O6 ⁱⁱ	76.1 (3)
O5 ⁱⁱⁱ —Nd1—O3	152.5 (2)	O4—Nd1—O6 ⁱⁱ	73.4 (2)
O2W—Nd1—O3	127.3 (3)	O2—Nd1—O6 ⁱⁱ	131.1 (2)
O1—Nd1—O3	77.8 (2)	O1W—Nd1—O5 ⁱⁱ	138.6 (2)
O1W—Nd1—O4	78.7 (3)	O5 ⁱⁱⁱ —Nd1—O5 ⁱⁱ	64.9 (2)
O5 ⁱⁱⁱ —Nd1—O4	153.8 (2)	O2W—Nd1—O5 ⁱⁱ	71.9 (2)
O2W—Nd1—O4	76.5 (3)	O1—Nd1—O5 ⁱⁱ	75.06 (19)
O1—Nd1—O4	127.8 (2)	O3—Nd1—O5 ⁱⁱ	121.0 (2)
O3—Nd1—O4	51.6 (2)	O4—Nd1—O5 ⁱⁱ	117.6 (2)
O1W—Nd1—O2	75.8 (2)	O2—Nd1—O5 ⁱⁱ	121.8 (2)
O5 ⁱⁱⁱ —Nd1—O2	80.4 (2)	O6 ⁱⁱ —Nd1—O5 ⁱⁱ	49.87 (19)
O2W—Nd1—O2	147.1 (3)		

Symmetry code(s): (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) x+1, y, z.

Table S5. Selected Bond ler	ngths (Å) for MO	F 3.	
Sm1—O1	2.506 (5)	Sm1—05	2.466 (6)

Sm1—O2 ⁱ	2.421 (5)	Sm1—06	2.486 (6)
Sm1—O2	2.648 (5)	Sm1—07	2.374 (5)
Sm1—O3	2.452 (5)	Sm1—08	2.427 (6)
Sm1—O4	2.498 (6)		

Symmetry code(s): (i) -x+1, -y+1, -z+2.

Table S6. Selected Bon	nd angles (Å) for MOF (3.	
O2—Sm1—O1	50.02 (16)	O6—Sm1—O4	114.2 (2)
O2 ⁱ —Sm1—O1	114.87 (17)	O6—Sm1—O5	51.51 (18)
O3—Sm1—O1	84.22 (18)	O7—Sm1—O1	146.6 (2)
O3—Sm1—O2	74.95 (15)	O7—Sm1—O2 ⁱ	84.9 (2)
O3—Sm1—O2 ⁱ	78.36 (17)	O7—Sm1—O2	138.74 (18)
O4—Sm1—O1	132.13 (19)	O7—Sm1—O3	127.63 (18)
O4—Sm1—O2	122.22 (17)	O7—Sm1—O4	75.37 (18)
O4—Sm1—O2 ⁱ	80.14 (19)	O7—Sm1—O5	98.9 (2)
O4—Sm1—O3	53.12 (16)	O7—Sm1—O6	78.3 (2)
O5—Sm1—O1	76.0 (2)	O8—Sm1—O1	81.7 (2)
O5—Sm1—O2 ⁱ	152.76 (18)	O8—Sm1—O2 ⁱ	79.3 (2)
O5—Sm1—O2	120.99 (19)	O8—Sm1—O2	71.81 (19)
O5—Sm1—O3	78.09 (18)	O8—Sm1—O3	145.46 (19)
O5—Sm1—O4	74.8 (2)	O8—Sm1—O4	145.7 (2)
O6—Sm1—O1	72.9 (2)	O8—Sm1—O5	127.9 (2)
O6—Sm1—O2 ⁱ	153.71 (17)	O8—Sm1—O6	77.1 (2)
O6—Sm1—O2	117.29 (19)	O8—Sm1—O7	75.7 (2)

S18

Symmetry code(s): (i) -x+1, -y+1, -z+2.

Table S7. Selected Bond lengths (Å) for MOF 4.			
Eu1—O1W	2.346 (6)	Eu1—O6	2.461 (7)
Eu1—O4	2.402 (6)	Eu1—O1 ⁱ	2.483 (6)
Eu1—O2W	2.406 (6)	Eu1—O3 ⁱⁱ	2.490 (6)
Eu1—O5	2.439 (7)	Eu1—O4 ⁱⁱ	2.635 (6)
Eu1—O2 ⁱ	2.440 (5)		

Symmetry code(s): (i) x+1, y, z; (ii) -x+2, -y+1, -z+1.

Table S8. Selected Bond angles (Å) for MOF 4.			
O1W—Eu1—O4	84.8 (2)	O5—Eu1—O1 ⁱ	74.3 (2)
O1W—Eu1—O2W	76.1 (2)	O2 ⁱ —Eu1—O1 ⁱ	53.24 (18)
O4—Eu1—O2W	79.3 (2)	O6—Eu1—O1 ⁱ	114.3 (2)
O1W—Eu1—O5	98.9 (3)	O1W—Eu1—O3 ⁱⁱ	147.1 (2)
O4—Eu1—O5	152.6 (2)	O4—Eu1—O3 ⁱⁱ	114.61 (19)
O2W—Eu1—O5	128.0 (2)	O2W—Eu1—O3 ⁱⁱ	81.6 (2)
O1W—Eu1—O2 ⁱ	127.3 (2)	O5—Eu1—O3 ⁱⁱ	76.3 (2)
O4—Eu1—O2 ⁱ	78.46 (19)	O2 ⁱ —Eu1—O3 ⁱⁱ	84.1 (2)

O2W—Eu1—O2 ⁱ	145.5 (2)	O6—Eu1—O3 ⁱⁱ	73.2 (2)
O5—Eu1—O2 ⁱ	77.8 (2)	O1 ⁱ —Eu1—O3 ⁱⁱ	132.1 (2)
O1W—Eu1—O6	78.2 (3)	O1W—Eu1—O4 ⁱⁱ	138.7 (2)
O4—Eu1—O6	152.98 (19)	O4—Eu1—O4 ⁱⁱ	64.4 (2)
O2W—Eu1—O6	76.4 (2)	O2W—Eu1—O4 ⁱⁱ	71.9 (2)
O5—Eu1—O6	52.4 (2)	O5—Eu1—O4 ⁱⁱ	121.3 (2)
O2 ⁱ —Eu1—O6	128.6 (2)	O2 ⁱ —Eu1—O4 ⁱⁱ	74.87 (18)
O1W—Eu1—O1 ⁱ	74.9 (2)	06—Eu1—O4 ⁱⁱ	117.6 (2)
O4—Eu1—O1 ⁱ	80.6 (2)	O1 ⁱ —Eu1—O4 ⁱⁱ	122.23 (19)
O2W—Eu1—O1 ⁱ	145.9 (2)	O3 ⁱⁱ —Eu1—O4 ⁱⁱ	50.24 (18)

Symmetry code(s): (i) *x*+1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+1.

Table S9. Selected Bond lengths (Å) for MOF 5.			
O1—Tb1	2.415 (9)	O4—Tb1	2.413 (7)
O2—Tb1	2.449 (9)	O5—Tb1 ⁱ	2.458 (8)
O1W—Tb1	2.329 (8)	O6—Tb1	2.366 (8)
O3—Tb1	2.457 (8)	O6—Tb1 ⁱⁱ	2.628 (8)
O2W—Tb1	2.378 (9)		

Symmetry code(s): (i) -*x*+2, -*y*, -*z*+2; (ii) -*x*+1, -*y*, -*z*+2.

Table S10. Selected Bond angles (Å) for MOF 5.

Tb1—O6—Tb1 ⁱⁱ	116.4 (3)	O4—Tb1—O3	53.8 (3)
O1W—Tb1—O6	85.3 (3)	O1—Tb1—O3	74.2 (3)
O1W—Tb1—O2W	75.8 (3)	O2—Tb1—O3	114.6 (3)
O6—Tb1—O2W	78.4 (3)	O1W—Tb1—O5 ⁱ	146.6 (3)
O1W—Tb1—O4	127.8 (3)	06—Tb1—05 ⁱ	114.3 (3)
O6—Tb1—O4	78.7 (3)	O2W—Tb1—O5 ⁱ	81.7 (3)
O2W—Tb1—O4	145.1 (3)	O4—Tb1—O5 ⁱ	84.0 (3)
O1W—Tb1—O1	98.7 (4)	O1—Tb1—O5 ⁱ	76.5 (3)
O6—Tb1—O1	152.6 (3)	O2—Tb1—O5 ⁱ	73.1 (3)
O2W—Tb1—O1	128.9 (3)	O3—Tb1—O5 ⁱ	132.6 (3)
O4—Tb1—O1	77.5 (3)	O1W—Tb1—O6 ⁱⁱ	138.7 (3)
O1W—Tb1—O2	77.7 (4)	O6—Tb1—O6 ⁱⁱ	63.6 (3)
06—Tb1—O2	152.5 (3)	O2W—Tb1—O6 ⁱⁱ	71.9 (3)
O2W—Tb1—O2	76.5 (3)	O4—Tb1—O6 ⁱⁱ	74.5 (3)
O4—Tb1—O2	128.8 (3)	O1—Tb1—O6 ⁱⁱ	121.5 (3)
O1—Tb1—O2	53.1 (3)	O2—Tb1—O6 ⁱⁱ	117.8 (3)
O1W—Tb1—O3	74.8 (3)	O3—Tb1—O6 ⁱⁱ	122.1 (3)
O6—Tb1—O3	80.9 (3)	O5 ⁱ —Tb1—O6 ⁱⁱ	50.6 (3)
O2W—Tb1—O3	145.2 (3)		

Symmetry code(s): (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+2.

D—H···A	<i>D</i> —H (Å)	$\mathrm{H}^{\dots}A\left(\mathrm{\AA}\right)$	$D \cdots A$ (Å)	D—H···A (°)
01WH1WA05 ⁱ	0.82	1.89	2.6898(1)	172
O1WH1WBN1 ^{iv}	0.82	1.88	2.9236(1)	167
O2WH2WAO3 ⁱⁱ	0.81	2.20	2.9236(1)	148
O2WH2WBO1 ⁱⁱⁱ	0.81	2.39	2.9593(1)	128
O2WH2WBO1 ⁱⁱⁱ	0.81	2.41	3.0257(1)	133

Table S11. Hydrogen bonding parameters of MOF 1

Symmetry code(s): (i) 1+x,y,z ; (ii) 1-x,-y,1-z; (iii) -x,-y,1-z; (iv) 1-x,-y,2-z.

Table S12. Hydrogen bonding parameters of MOF	2
--	---

D—H···A	<i>D</i> —H (Å)	$\mathbf{H}^{\dots}A\left(\mathbf{\mathring{A}}\right)$	$D^{\dots}A$ (Å)	D—H···A (°)
O1WH1WN1 ⁱⁱⁱ	0.82	1.88	2.6931(1)	169
O1WH1WBO3 ⁱ	0.82	1.89	2.7047(1)	175
O2WH2WAO1 ⁱⁱ	0.82	2.17	2.9462(1)	158
O2WH2WAO6 ⁱⁱ	0.82	2.45	2.9343(1)	118

Symmetry code(s): (i) -1+x,y,z ;(ii) -x,-y,1-z; (iii) -x,-y,-z.

Table S13. Hydrogen bonding parameters of MOF 3

D—H…A	<i>D</i> —H (Å)	$\mathrm{H}^{\dots}A\left(\mathrm{\AA}\right)$	$D \cdots A$ (Å)	D—H···A (°)
O(7)H(7A)O(5) ⁱ	0.85	1.90	2.7158(1)	161
O(7H(7B)N(1) ⁱⁱ	0.85	2.16	2.6980(1)	121
O(8)H(8B)O(2) ⁱⁱ	0.85	2.60	2.9613(1)	107
O(8)H(8B)O(3) ⁱ	0.85	2.10	2.9080(1)	160

Symmetry code(s): (i) 1+x,y,z; (ii) 1+x,y,1+z.

Table S14. Hydrogen bonding parameters of MOF 4

D—H···A	<i>D</i> —H (Å)	$\mathbf{H}^{\dots A}\left(\mathbf{\mathring{A}}\right)$	$D^{\dots}A$ (Å)	D—H···A (°)
O1WH1WAN1 ^{iv}	0.82	1.90	2.6904(1)	162
O1WH1WBO5 ⁱ	0.82	1.91	2.7992(1)	173
O2WH2WAO2 ⁱⁱⁱ	0.81	2.31	2.9069(1)	131
O2WH2WBO3 ⁱⁱ	0.81	2.26	2.9635(1)	144
O2WH2WBO3 ⁱⁱⁱ	0.82	2.26	2.9498	143

Symmetry code(s): (i) 1+x,y,z; (ii) 1-x,-y,1-z; (iii) 2-x,-y,1-z; (iv) 2-x,-y,2-z.

Table S15. Hydrogen bonding parameters of MOF 5

$\overline{D-H\cdots A}$	<i>D</i> —H (Å)	$\mathrm{H}^{\dots}A\left(\mathrm{\AA}\right)$	$D \cdots A$ (Å)	D—H···A (°)	
O1WH1WAO1 ⁱⁱ	0.82	1.91	2.7189(1)	171	
O1WH1WBN1 ⁱⁱⁱ	0.82	1.87	2.6818(1)	172	
O2WH2WAO6 ⁱ	0.82	2.32	2.9461(1)	133	
O2WH2WBO5 ⁱⁱ	0.81	2.31	2.9566(1)	137	
O2WH2WBO4 ⁱ	0.81	2.23	2.8844(1)	137	

Symmetry code(s): (i) 1-x,-y,2-z; (ii) -1+x,y,z; (iii) 1-x,-y,1-z.

4. Previous MOF-based sensors for Pb²⁺ detection Table

Table S16	Comparison	of Quenching	Efficiencieswith	previously	reported literature.
	1	È È		1 4	1

MOF	Stern -Volmer	Analyte	Ref.
	Constant (Ksv)L/mol		
$[Eu_2(FDC)_3DMA(H_2O)_3]\cdot DMA\cdot 4.5H_2O$	2.97×10^{3}	Pb^{2+}	4
	9.970×10^{3}	Pb^{2+}	5
$[Cd_3(5-NH_2-mdc)_3(Bipy)_3\cdot H_2O]n$			
$\{[(CH_3)2NH_2]_3(In_3L_4)\} \cdot (solvent)x$	9.78×10^{3}	Pb^{2+}	6
NH ₂ -MIL-53(Cr)	7.48×10^{3}	Pb ²⁺	7

[Zn(HL ₂)(bipy)0.5(H ₂ O)]·2H ₂ O	1.18×10 ⁴	Pb^{2+}	8
This work	8.90×10 ³	Pb^{2+}	This
			work
This work	5.47×10^{4}	Pb^{2+}	This
			work

5.Stern - Volmer Constants, Quenching Efficiencies and LODs Table

CP-4 with Heavy metal analyte	Stern -Volmer Constant (K _{sv}) L/mol	Quenching Efficiency (%)	LOD(ppm)
Pb ²⁺	8.90 ×10 ³	74.5%	0.014
Cd^{2+}	2.79 ×10 ³	54.00%	0.069
Hg ²⁺	1.92 ×10 ³	54.35%	0.20
Mn ²⁺	8.91×10 ²	53.95%	1.03
Ni ²⁺	2.38×10^{2}	53.24%	1.15

Table S17 Stern -Volmer Constants, Quenching Efficiencies and LODs Tables

CP-5 with Heavy metal analyte	Stern -Volmer Constant (K _{sv}) L/mol	Quenching Efficiency (%)	LOD(ppm)
Pb ²⁺	5.47×10 ⁴	95.1%	0.013
Hg^{2+}	1.62×10^{4}	86.39%	0.098
Ni ²⁺	3.65×10^{2}	63.49%	1.23
Cd^{2+}	3.12×10 ³	57.49%	1.29
Mn ²⁺	1.31×10^{3}	52.37%	2.12

References:

- C. Li, T. Chen, W. Xu, X. Lou, L. Pan, Q. Chen and B. Hu, J. Mater. Chem. A, 2015, 3, 5585–5591.
- 2. L. Peng, J. Zhang, Z. Xue, B. Han, J. Li and G. Yang, Chem. Commun., 2013, 49, 11695.
- 3. V. I. Isaeva, E. V. Belyaeva, A. N. Fitch, V. V. Chernyshev, S. N. Klyamkin, and L. M. Kustov, *Cryst. Growth Des.* 2013, **13**, 5305–5315.
- L. Li, Q. Chen, Z. Niu, X. Zhou, T. Yang and W. Huang, J. Mater. Chem. C, 2016, 4, 1900-1905.
- 5. K.A.Nartey, X.Wang, J. Zhang and J. Hu, Opt. Mater., 2021, 119, 111327.
- Q. Li, B. Guan, W. Zhu, T. Liu, L. Chen, Y. Wang and D. Xue, *J. Solid State Chem.*, 2020,291, 121672.

- H. Guo, D. Wang, J. Chen, W. Weng, M. Huang and Z. Zheng, *Chem. Eng. J.*,2016, 289 479-485.
- 8. J.X. Hou, J.P. Gao, J. Liu, X. Jing, L. J. Li and J.L. Du, Dyes Pigm., 2019, 160, 159-164.