SUPPLEMENTARY INFORMATION

Polymorphism in cocrystals of metronidazole benzoate

Wendell Saraiva Costa^a, Yara Santiago de Oliveira^b, and Alejandro Pedro Ayala^{c*}

^a Department of Pharmacy. Federal University of Ceará. Fortaleza, Ceará, Brazil.

^b Institute of Health Sciences. University of International Integration of the Afro-Brazilian Lusophony, Redenção - CE, Brazil.

^c Department of Physics. Federal University of Ceará. Fortaleza, Ceará, Brazil.

Parameter	Polymorph I	Polymorph II	
CCDC	1890433	1892488	
Empirical formula	$C_{20}H_{19}N_3O_7$	C ₂₀ H ₁₉ N ₃ O ₇	
Formula weight	413.38	413.38	
Temperature/K	301.34	295.85	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_1/c$	$P2_1/c$	
a/Å	9.5055 (6)	10.645 (3)	
b/Å	31.2239 (19)	21.957 (8)	
c/Å	6.8578 (4)	8.674 (3)	
β/°	102.628 (2)	91.131 (11)	
Volume/Å ³	1986.2 (2)	2027.0 (12)	
Z	4	4	
$\rho_{calc}g/cm^3$	1.382	1.355	
μ/mm^{-1}	0.106	0.104	
F (000)	864.0	864.0	
Crystal size/mm ³	$0.678 \times 0.244 \times 0.16$	$0.285 \times 0.181 \times 0.08$	
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	
2 Θ range for data collection/°	5.884 to 55.016	5.05 to 52.034	
Inday ranges	$-12 \le h \le 12, -40 \le k \le 40,$	$-13 \le h \le 12, -27 \le k \le 27,$	
lindex ranges	$-8 \le l \le 8$	$-10 \le 1 \le 10$	
Reflections collected	69959	16752	
Independent reflections	$4553 [R_{int} = 0.0348]$	3980 [R _{int} = 0.1226]	
Data/restraints/parameters	4553/0/277	3980/0/274	
Goodness-of-fit on F ²	1.048	1.001	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0429, wR_2 = 0.1111$	$R_1 = 0.0634, wR_2 = 0.1191$	
Final R indexes [all data]	$R_1 = 0.0496, wR_2 = 0.1182$	$R_1 = 0.1677, wR_2 = 0.1633$	
Largest diff. peak/hole / e Å ⁻³	0.16/-0.20	0.17/-0.24	

Table S1. Crystal data and refinement parameters of BZMDSLC polymorphs I and II.

 Table S2. Hydrogen-bonds of polymorphs I and II of BZMDSLC.

BZMDSLC-I							
$Donor - H \cdots Acceptor$	D – H (Å)	$H \cdots A (Å)$	$D \cdots A (Å)$	$D - H \cdots A$ (°)	Туре		
O1A-H1A····N2	0.89	1.85	2.6610 (18)	170	i		
C4A–H4AA…O1	0.93	2.43	3.270 (2)	151	ii		
C2–H2···O3A	0.93	2.55	3.4504 (19)	163	ii		
C10–H10····O2	0.93	2.58	3.486 (2)	164	iii		
O3A−H3A····O2A	0.82	1.90	2.6218(18)	145	Intra		
C7A–H7A···O1A	0.93	2.40	2.721 (2)	100	Intra		
C5–H5A…O2	0.97	2.46	2.8282 (2)	102	Intra		
C6–H6B····O2	0.97	2.43	3.0062(19)	118	Intra		
		BZMD	SLC-II				
$Donor - H \cdots Acceptor$	D - H (Å)	$\mathrm{H}\cdots\mathrm{A}(\mathrm{\AA})$	$D \cdots A (Å)$	$D - H \cdots A$ (°)	Туре		
O1A-H1A···N2	0.82	1.82	2.632 (4)	170	i		
O3A−H3A····O4	0.82	2.60	3.171 (4)	128	ii		
C5–H5B…O4	0.97	2.36	3.251 (4)	152	iv		
C6–H6B····O2A	0.97	2.40	3.206 (4)	140	ii		
С9–Н9…О1	0.93	2.58	3.288 (5)	134	ii		
O3A–H3A···O2A	0.82	1.87	2.588 (4)	145	Intra		
C5–H5A…O2	0.97	2.50	2.864 (4)	102	Intra		
С6–Н6В…О2	0.97	2.46	3.078 (4)	121	Intra		
(<i>i</i>) x,y,z ; (<i>ii</i>) 1-x,1-y,1-z; (<i>iii</i>) -1+x,3/2-y,1/2+z; (<i>iv</i>) x,1/2-y,1/2+z							

Polymorph I								
Cg(I)	Cg(J)	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg3	Cg3	3.5952(9)	0.00(7)	12	12	3.5170(6)	3.5169(6)	0.746
Cg1	Cg3	3.6280(9)	5.22(7)	21.3	19.9	-3.4113(6)	-3.3813(6)	1.315
Cg3	Cg1	3.6280(9)	5.22(7)	19.9	21.3	-3.3813(6)	-3.4113(6)	1.235
Cg2	Cg2	4.0737(10)	11.25(8)	38.7	27.7	3.6084(7)	-3.1773(7)	2.549
Cg2	Cg2	4.0737(10)	11.25(8)	27.7	38.7	-3.1773(7)	3.6084(7)	1.891
Cg1	Cg2	4.9729(10)	67.37(8)	12.5	72.4	1.5051(6)	4.8557(7)	
				Polymorp	h II			
Cg(I)	Cg(J)	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg1	Cg1	3.846(2)	0.00(19)	30.9	30.9	-3.3013(14)	-3.3013(14)	1.973
Cg1	Cg3	4.010(3)	3.3(2)	29.5	32.5	3.3812(14)	3.4898(18)	1.975
Cg3	Cg1	4.010(3)	3.3(2)	32.5	29.5	3.4896(18)	3.3812(14)	2.155
Cg2	Cg3	4.581(3)	53.8(2)	50.3	10.2	-4.5089(18)	2.929(2)	
Cg3	Cg2	4.581(3)	53.8(2)	10.2	50.3	2.929(2)	-4.5091(18)	
Cg2	Cg2	5.439(3)	79.7(2)	16.6	88.1	0.1764(18)	-5.2130(18)	
Cg2	Cg3	5.729(4)	75.4(2)	31.9	72.7	-1.7031(18)	-4.864(2)	

Table S3. Centroid distances of π - π stacking on polymorphs I and II of BZMDSLC.

Cg1 -> imidazole; Cg2 -> phenyl; Cg3 -> salicylic

Parameter	Polymorph I	Polymorph II
CCDC	1890426	1892489
Empirical formula	$C_{15}H_{15}N_3O_6$	$C_{15}H_{15}N_3O_6$
Formula weight	333.30	333.30
Temperature/K	273.15	273.15
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_1/c$	Pbca
a/Å	9.0358 (5)	7.2928 (5)
b/Å	26.6419 (14)	17.0257 (9)
c/Å	6.8796 (3)	25.6078 (16)
β/°	102.419 (2)	
Volume/Å ³	1617.38 (14)	3179.6 (3)
Z	4	4
$\rho_{calc}g/cm^3$	1.369	1.393
μ/mm^{-1}	0.108	0.110
F (000)	696.0	1392.0
Crystal size/mm ³	$0.632 \times 0.172 \times 0.168$	$0.228 \times 0.198 \times 0.105$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.538 to 55.056	5.042 to 54.19
Index reneed	$-11 \le h \le 11, -34 \le k \le 34,$	$-9 \le h \le 9, -21 \le k \le 21,$
index ranges	$-8 \le l \le 8$	$-32 \le 1 \le 32$
Reflections collected	46849	60358
Independent reflections	3705 [R _{int} = 0.0658]	$3511 [R_{int} = 0.1521]$
Data/restraints/parameters	3705/0/219	3511/0/218
Goodness-of-fit on F ²	1.044	1.007
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0542, wR_2 = 0.1330$	$R_1 = 0.0575, wR_2 = 0.1285$
Final R indexes [all data]	$R_1 = 0.0783, wR_2 = 0.1544$	$R_1 = 0.1387, wR_2 = 0.1771$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.32	0.20/-0.30

BZMDFMA-I							
Donor – H … Acceptor	D – H (Å)	$\mathrm{H} \cdots \mathrm{A} (\mathrm{\AA})$	$D \cdots A (Å)$	$D - H \cdots A$ (°)	Type		
O1A-H1A····N2	0.82	1.84	2.655 (3)	172	i		
C2A–H2A····O1	0.93	2.45	3.286 (3)	149	ii		
C4–H4A····O2A	0.96	2.58	3.440 (3)	149	iii		
C2–H2···O2A	0.93	2.57	3.496 (3)	176	ii		
C2A–H2A····O1A	0.93	2.41	2.745 (3)	101	Intra		
C5–H5A····O2	0.97	2.39	2.831 (3)	107	Intra		
		BZMDFN	IA-II				
$Donor - H \cdots Acceptor$	D – H (Å)	$\mathrm{H} \cdots \mathrm{A} (\mathrm{\AA})$	$D \cdots A (Å)$	$D-H\cdots A\left(^{o}\right)$	Туре		
O1A-H1A···N2	0.82	1.89	2.661 (3)	156	i		
C2-H2····O2A	0.93	2.20	3.101 (5)	163	iv		
С9–Н9…ОЗ	0.93	2.41	2.729 (5)	100	Intra		
С5-Н5А…О2	0.97	2.39	2.851 (4)	108	Intra		
(<i>i</i>) x,y,z ; (<i>ii</i>) 1-x,1-y,-z; (<i>i</i>	<i>ii</i>) x,y,1+z; (<i>iv</i>)	-1/2+x,3/2-y,1-z					

Table S5. Hydrogen-bonds of polymorphs I and II of BZMDFMA.

Table S6. Centroid distances of π - π stacking on polymorphs I and II of BZMDFMA.

Polymorph I								
Cg(I)	Cg(J)	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg2	Cg2	4.0001(14)	6.34(11)	28.6	34.7	3.2869(10)	3.5128(10)	1.914
Cg2	Cg2	4.0002(14)	6.34(11)	34.7	28.6	3.5128(10)	3.2870(10)	2.280
Cg1	Cg1	4.6885(12)	0.02(12)	49.4	49.4	3.0500(8)	3.0501(8)	3.561
Cg1	Cg2	4.9059(14)	64.94(12)	19.4	70.0	1.6748(9)	4.6275(10)	
Polymorph II								
Cg(I)	Cg(J)	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg2	Cg2	4.0684(19)	11.70(15)	37.3	27.7	3.6026(13)	3.2348(13)	2.467
Cg2	Cg2	4.0684(19)	11.70(15)	27.7	37.3	3.2348(13)	3.6026(13)	1.890
Cg1	Cg2	5.6299(18)	78.67(16)	26.4	75.7	1.3868(13)	5.0439(14)	

 $Cg1 \rightarrow imidazole; Cg2 \rightarrow phenyl.$

Figure S1. FT-IR spectra of the physical mixture of BZMD and FMA as a function of the neat grinding time compared to the BZMD and BZMDFMA polymorphs spectra.

Figure S2. FT-IR spectra of the physical mixture of BZMD and FMA as a function of ethanol-assisted grinding time compared to the BZMD and BZMDFMA polymorphs spectra.

Figure S3. FT-IR spectra of the physical mixture of BZMD and SLC as a function of the neat grinding time compared to the BZMD and BZMDSLC polymorphs spectra.

Figure S4. FT-IR spectra of the physical mixture of BZMD and SLC as a function of the ethanol-assisted grinding time compared to the BZMD and BZMDSLC polymorphs spectra.

Figure S5 - Crystalline habits of the BZMDSLC polymorphs: (a) form I and (b) form II.

Figure S6. Synthons and graph sets of polymorphs I and II of BZMDSLC.

Figure S7. Crystalline habits of polymorphs of cocrystals BZMDFMA. a) form I b) form II.

Figure S8. Synthons and graph sets of polymorphs I and II of BZMDFMA.

Figure S9. Simultaneous thermogravimetry and differential scanning calorimetry of BZMDSLC-I, BZMD and SLC.

Figure S10. Representative DSC curves of BZMDSLC. (a)-(c) form I heating/cooling/heating cycles. (d) heating exhibiting the melting of form I recrystallizing into form II. (e) amorphous sample recrystallizing into form II.

Figure S11. Simultaneous thermogravimetry and differential scanning calorimetry of BZMDFMA-I, BZMD, and FMA.