Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

for

Topochemical 1,3-dipolar Cycloaddition Polymerization

Assisted by Non-covalent Interactions

Xiao Meng,^{a,c*} Shu Xu,^a Changqing Chen,^b Lihui Guo^a and Yuguo Ma^{a*}

a. Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China

b. Department of Chemistry and Physics, Salem State University, Salem, MA 01970, U.S.A

c. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

Table of Contents	Pages
Experimental Section	S2
X-ray Diffraction Pattern	S 9

1. Experimental Section

Compound 3, 4 and 2-OH were synthesized according to references.^[1-3]

4-ethynyl-N-(3-hydroxypropyl)benzamide (1-OH): 1-OH was synthesized according to the reference^[3].

¹H NMR (400 MHz, CDCl3): δ 7.73 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 6.76 (m, 1H), 3.74 (dd, 2H), 3.64 (dd, 2H), 3.2 (s, 1H), 2.99 (m, 1H), 1.81 (m, 2H); ¹³C NMR (100 MHz, CDCl3): δ 167.5, 134.2, 132.3, 126.9, 125.4, 82.7, 79.5, 60.1, 37.5, 31.9; HR-MS (ESI, C₁₂H₁₃NO₂, solvent: CDCl3, m/z): Anal. Calcd. for [(M+Na)+]: 225.1961, Found 225.1955, Error: -0.61 mDa.

Figure S1-1. ¹H NMR spectrum of 1-OH in CDCl₃.

Figure S1-2. ¹³C NMR spectrum of 1-OH in CDCl₃.

Figure S1-3. ¹H NMR spectrum of **1** in CDCl₃.

Figure S1-4. ¹⁹F NMR spectrum of **1** in CDCl₃.

Figure S1-5. ¹³C NMR spectrum of **1** in CDCl₃.

Figure S1-6. ¹H NMR spectrum of **2** in CDCl₃.

Figure S1-7. ¹⁹F NMR spectrum of **2** in CDCl₃.

Figure S1-8. ¹³C NMR spectrum of 2 in CDCl₃.

Figure S1-9. Thermogravimetric analysis (TGA) spectra of 1(a) and 2 (b).

Figure *S1-10.* FT-IR spectra of **1** (a) and the product after heating at 90 °C for 24 hours, as well as **2** (b) and the product after heating at 90 °C for 24 hours.

Figure *S1-11.* GPC chromatogram of the obtained products of compound **1** and **2** from metal-free 1,3-dipolar cycloaddition polymerization at 90 °C for 30 minutes.

Figure *S1-12.* ¹H NMR of mixture (inset: chemical structure) after 90 °C for 30 min in solid state.

2. X-ray Diffraction Pattern

Cambridge Crystallographic Data Centre (CCDC) Deposition Number: **1**: 1448790.

Table S2-1. Crystal data and structure refinement for 1.

Identification code	1
Empirical formula	C19 H12 F4 N4 O3
Formula weight	420.33
Temperature	173.1500 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	$a = 6.925(3) \text{ Å} \qquad \alpha = 90 \text{ °}$
	$b = 27.776(11) \text{ Å} \qquad \beta = 106.46(3)^{\circ}$
	$c = 9.963(5) \text{ Å} \qquad \gamma = 90 \text{ °}$
Volume	1837.8(14) Å ³
Z	4

Density (calculated)	1.519 Mg/m ³
Absorption coefficient	0.132 mm ⁻¹
F(000)	856
Crystal size	0.43 x 0.26 x 0.07 mm ³
Theta range for data collection	1.466 to 25.197 °
Index ranges	-8<=h<=8, -32<=k<=33, -11<=l<=11
Reflections collected	14246
Independent reflections	3293 [R(int) = 0.0375]
Completeness to theta = 25.242°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.8349
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3293 / 0 / 275
Goodness-of-fit on F ²	1.192
Final R indices [I>2sigma(I)]	R1 = 0.0869, wR2 = 0.2070
R indices (all data)	R1 = 0.1017, wR2 = 0.2163
Extinction coefficient	n/a
Largest diff. peak and hole 0.436 and -0.	192 e.Å ⁻³

Table S2-2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for **1**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
F1	2742(5)	4976(1)	9483(3)	80(1)
F2	3986(5)	5679(1)	11317(3)	80(1)
F3	3618(4)	6763(1)	7591(3)	74(1)
F4	2458(4)	6052(1)	5785(3)	77(1)
O1	5466(5)	7009(1)	10310(4)	82(1)
O2	3741(4)	6635(1)	11594(3)	62(1)
O3	133(5)	7577(1)	14939(3)	65(1)
N1	1307(10)	4332(2)	6875(7)	127(2)
N2	1642(7)	4732(2)	6804(5)	84(1)
N3	1909(6)	5159(2)	6489(4)	73(1)
N4	47(5)	7330(1)	12789(3)	47(1)
C1	2580(6)	5492(2)	7572(4)	56(1)
C2	2966(6)	5420(1)	9004(5)	57(1)
C3	3602(6)	5792(2)	9943(4)	57(1)

C4	3849(6)	6256(1)	9534(4)	53(1)
C5	3453(6)	6320(2)	8113(4)	53(1)
C6	2843(6)	5957(2)	7160(4)	53(1)
C7	4476(6)	6675(2)	10522(5)	61(1)
C8	4190(7)	7028(2)	12601(5)	62(1)
C9	3260(6)	6901(2)	13744(4)	60(1)
C10	979(6)	6868(2)	13273(4)	53(1)
C11	-268(5)	7660(1)	13663(4)	46(1)
C12	-1061(5)	8141(1)	13103(3)	43(1)
C13	-1088(5)	8503(2)	14064(4)	51(1)
C14	-1641(6)	8964(2)	13645(4)	53(1)
C15	-2198(5)	9084(2)	12230(4)	52(1)
C16	-2227(6)	8720(2)	11253(4)	55(1)
C17	-1672(5)	8255(1)	11671(4)	49(1)
C18	-2737(6)	9570(2)	11777(4)	61(1)
C19	-3115(8)	9976(2)	11441(5)	71(1)

F1-C2	1.348(5)	F2-C3-C4	120.7(4)
F2-C3	1.355(5)	C4-C3-C2	122.9(4)
F3-C5	1.354(5)	C3-C4-C7	124.4(4)
F4-C6	1.345(5)	C5-C4-C3	114.8(4)
O1-C7	1.208(5)	C5-C4-C7	120.7(4)
O2-C7	1.311(5)	F3-C5-C4	119.9(4)
O2-C8	1.455(5)	F3-C5-C6	116.5(4)
O3-C11	1.244(4)	C6-C5-C4	123.6(4)
N1-N2	1.141(6)	F4-C6-C1	118.7(4)
N2-N3	1.253(6)	F4-C6-C5	119.8(4)
N3-C1	1.397(6)	C5-C6-C1	121.6(4)
N4-C10	1.455(5)	O1-C7-O2	125.4(4)
N4-C11	1.324(5)	O1-C7-C4	123.5(4)
C1-C2	1.390(6)	O2-C7-C4	111.1(4)
C1-C6	1.384(6)	O2-C8-C9	107.1(3)
C2-C3	1.381(6)	C8-C9-C10	114.3(3)
C3-C4	1.377(6)	N4-C10-C9	112.0(3)
C4-C5	1.375(6)	O3-C11-N4	120.9(4)
C4-C7	1.506(6)	O3-C11-C12	120.0(3)
C5-C6	1.366(6)	N4-C11-C12	119.1(3)
C8-C9	1.500(6)	C13-C12-C11	117.7(3)
C9-C10	1.518(6)	C13-C12-C17	118.5(4)
C11-C12	1.493(5)	C17-C12-C11	123.6(3)
C12-C13	1.391(5)	C14-C13-C12	121.6(4)
C12-C17	1.404(5)	C13-C14-C15	120.4(4)
C13-C14	1.368(6)	C14-C15-C16	118.5(4)
C14-C15	1.392(5)	C14-C15-C18	120.9(4)
C15-C16	1.400(6)	C16-C15-C18	120.6(4)
C15-C18	1.439(6)	C17-C16-C15	121.3(4)
C16-C17	1.377(6)	C16-C17-C12	119.7(4)
C18-C19	1.185(6)	C19-C18-C15	177.4(5)
C7-O2-C8	116.2(3)		
N1-N2-N3	169.5(6)		
N2-N3-C1	118.2(4)		
C11-N4-C10	122.2(3)		
C2-C1-N3	128.5(4)		
C6-C1-N3	115.6(4)		
C6-C1-C2	115.9(4)		
F1-C2-C1	119.2(4)		
F1-C2-C3	119.5(4)		
C3-C2-C1	121.3(4)		

 Table S2-3.
 Bond lengths [Å] and angles [deg] for 1.

116.3(4)

F2-C3-C2

U^{12}						
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F1	101(2)	62(2)	81(2)	8(1)	29(2)	5(1)
F2	108(2)	80(2)	55(2)	7(1)	28(1)	10(2)
F3	76(2)	66(2)	88(2)	10(1)	38(1)	2(1)
F4	80(2)	102(2)	52(2)	10(1)	22(1)	3(1)
01	83(2)	77(2)	104(3)	-21(2)	56(2)	-20(2)
O2	64(2)	65(2)	66(2)	-17(1)	35(2)	-7(1)
O3	92(2)	77(2)	32(1)	5(1)	26(1)	14(2)
N1	162(6)	69(3)	131(5)	-26(3)	13(4)	-15(3)
N2	79(3)	84(3)	83(3)	-23(3)	12(2)	2(2)
N3	75(3)	73(3)	72(3)	-15(2)	22(2)	-8(2)
N4	57(2)	63(2)	23(2)	2(2)	16(1)	-1(2)
C1	48(2)	62(3)	60(3)	-5(2)	17(2)	8(2)
C2	55(2)	50(2)	71(3)	14(2)	24(2)	11(2)
C3	60(2)	71(3)	44(2)	1(2)	20(2)	13(2)
C4	46(2)	55(2)	63(3)	-5(2)	26(2)	6(2)
C5	43(2)	57(2)	66(3)	6(2)	27(2)	10(2)
C6	44(2)	71(3)	48(2)	1(2)	20(2)	6(2)
C7	56(2)	63(3)	71(3)	-7(2)	28(2)	0(2)
C8	57(2)	65(3)	71(3)	-18(2)	28(2)	-5(2)
C9	60(2)	73(3)	46(2)	-3(2)	11(2)	10(2)
C10	65(2)	61(2)	36(2)	2(2)	19(2)	-2(2)
C11	42(2)	68(2)	32(2)	4(2)	16(2)	-3(2)
C12	36(2)	65(2)	32(2)	-1(2)	14(1)	-4(2)
C13	46(2)	73(3)	39(2)	-1(2)	18(2)	1(2)
C14	48(2)	67(3)	46(2)	-3(2)	17(2)	3(2)
C15	40(2)	62(2)	58(2)	7(2)	18(2)	1(2)
C16	49(2)	73(3)	39(2)	10(2)	8(2)	2(2)
C17	47(2)	61(2)	39(2)	-2(2)	11(2)	0(2)
C18	50(2)	79(3)	57(2)	6(2)	21(2)	-1(2)
C19	78(3)	70(3)	64(3)	13(2)	21(2)	7(2)

Table S2-4. Anisotropic displacement parameters (Å²x10³) for **1**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table S2-5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters (Å² $x10^3$) for **1**.

	Х	у	Z	U(eq)
H8A	3631	7327	12155	75
H8B	5635	7066	12981	75
H9A	3653	7142	14477	72
H9B	3799	6594	14145	72
H10A	571	6635	12522	64

H10B		507	67	56	14046	64	
H13		-720	84	30	15013	62	
H14		-1645	91	99	14309	63	
H16		-2630	87	93	10303	65	
H17		-1701	80	17	11008	59	
H19		-3411	102	295	11177	85	
H4		-140(60)	7392(14)		12040(40)	44(11)	
Table	<i>S2-6</i> .	Torsion		angles	[deg]	for	1.
F1-C2-C3-F2	2	0.7(6)		C3-C4-	-C7-O2	-34.4(5)	
F1-C2-C3-C4	4	-179.4(4)		C4-C5-	-C6-F4	179.0(3)	
F2-C3-C4-C	5	178.6(3)		C4-C5-	-C6-C1	-0.1(6)	
F2-C3-C4-C	7	-2.2(6)		C5-C4-	-C7-O1	-32.8(6)	
F3-C5-C6-F4	1	0.5(5)		C5-C4-	-C7-O2	144.8(4)	
F3-C5-C6-C	1	-178.5(3)		C6-C1-	-C2-F1	-180.0(3)	
O2-C8-C9-C	10	-64.1(5)		C6-C1-	-C2-C3	-0.9(6)	
O3-C11-C12	-C13	7.9(5)		C7-O2-	-C8-C9	-178.5(4)	
O3-C11-C12	-C17	-175.8(3)		C7-C4-C5-F3		-0.3(5)	
N1-N2-N3-C	21	179(3)	C7-C4-C5-C6		-178.7(3)		
N2-N3-C1-C	2	-1.7(7)		C8-O2-	-C7-O1	-0.5(7)	
N2-N3-C1-C	6	-179.9(4)		C8-O2-	-C7-C4	-178.0(3)	
N3-C1-C2-F	1	1.8(6)		C8-C9-	-C10-N4	-64.3(5)	
N3-C1-C2-C	3	-179.1(4)		C10-N4	4-C11-O3	-3.8(5)	
N3-C1-C6-F	4	-0.4(5)	C10-N4-C11-C12 174.5(3		174.5(3)		
N3-C1-C6-C	5	178.6(4)		C11-N4	4-C10-C9	-83.1(4)	
N4-C11-C12	-C13	-170.4(3)		C11-C1	12-C13-C14	174.8(3)	
N4-C11-C12	-C17	5.9(5)		C11-C1	12-C17-C16	-174.6(3)	
C1-C2-C3-F2	2	-178.3(3)		C12-C1	13-C14-C15	0.0(6)	
С1-С2-С3-С	4	1.5(6)		C13-C1	12-C17-C16	1.7(5)	
C2-C1-C6-F4	4	-178.9(3)	C13-C14-C15-C16 1.6(5)		1.6(5)		
C2-C1-C6-C	5	0.2(6)		C13-C	14-C15-C18	-178.5(4)	
C2-C3-C4-C	5	-1.3(6)		C14-C1	15-C16-C17	-1.6(6)	
C2-C3-C4-C	7	178.0(4)		C15-C1	16-C17-C12	0.0(6)	
C3-C4-C5-F3	3	179.0(3)		C17-C12-C13-		-1.7(5)	
С3-С4-С5-С	6	0.5(6)		C18-C1	15-C16-C17	178.5(4)	
C3-C4-C7-O	1	148.1(5)					

Table S2-7. Hydrogen bonds for 1 [Å and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N4-H4O3#1	0.74(4)	2.16(4)	2.869(4)	162(4)

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z-1/2

Reference:

[1] J. F. W. Keana and S. X. Cai, J. Org. Chem. 1990, 55, 3640-3647.

[2] N.-H. Nguyen, J. W. Apriletti, J. D. Baxter and T. S. Scanlan, *J. Am. Chem. Soc.* 2005, **127**, 4599-4608.

[3] S. J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Llorente and A. Zettl, J. M. Fréchet, *J. Am. Chem. Soc.* 2008, **130**, 4238-4239.