## Structural variety and dehydration in 3-aminopyridine-hypodiphosphoric acid-water system

Daria Budzikur-Maciąg, \*a Vasyl Kinzhybalo<sup>b</sup> and Katarzyna Ślepokura \*a



## Supporting information

**Figure S1. (a)** X-ray powder diffraction pattern for (1) (black line) compared with the theoretical diffraction pattern of (1)-HTP (red line; shown upside down). (b) Microscopic image of (1) crystal.



**Figure S2.** (a) X-ray powder diffraction pattern for (3) (black line) compared with the theoretical diffraction pattern of (3) (red line; shown upside down). (b) Microscopic image of (3) crystal.



**Figure S3.** (a) X-ray powder diffraction pattern for (5) (black line) compared with the theoretical diffraction pattern of (5) (red line; shown upside down). (b) Microscopic image of (5) crystal.

FT-IR analyses of compounds were performed using nujol mulls technique with a wavelength between 4000 to 400 cm<sup>-1</sup>. The recorded spectra are shown in Figures S4-S6. The absorption frequencies around 2925, 1462, 1377 cm<sup>-1</sup> are derived from nujol. Absorption frequencies 3398-3311 cm<sup>-1</sup> (N-H stretching), 3198-3128 cm<sup>-1</sup> (C–H stretching), 2725-2669 cm<sup>-1</sup> (N/O–H stretching), 1658-1612 cm<sup>-1</sup> (N-H in-plane bending), 1582-1290 cm<sup>-1</sup> (aromatic C=C stretching), 950-700 cm<sup>-1</sup> (ring breathing), 670-620 cm<sup>-1</sup> (NH<sub>2</sub> out-of-plane bending) and 560-552 cm<sup>-1</sup> (C-N-C out-of-plane bending) confirm the 3-aminopyridinium ring in the crystals. The visible bands between 1350-1260 cm<sup>-1</sup> correspond to the P-O(H) group, so it can be concluded that the hypodiphosphate anions are not completely deprotonated. In the frequency range 1154-894 cm<sup>-1</sup> bands from the P-O functional group are visible, and in the range 724-449 cm<sup>-1</sup> – O-P-O groups.



Figure S4. FT-IR spectrum of (1).



Figure S5. FT-IR spectrum of (3).



Figure S6. FT-IR spectrum of (5).

Almost all atoms of the cation in (1) are involved in 3-aminopyridinium…hypodiphosphate contacts  $R_2^2(10)$ C5 motifs observed (the exception is atom). Characteristic are \_ and  $R_2^2(9)$  – involving N3 or N1 nitrogen atom, an adjacent carbon atom and one or two oxygen atoms from hypodiphosphate anions. In the case of C and D of (1)-LTP cations, the NH<sub>2</sub> group is involved in  $R_2^2(6)$  ring formation. In B and C cations, water molecules are also involved in the formation of 3ap···PP supramolecular motifs, giving rise to  $R_3^3(10)$  ring.



**Figure S7.** Hydrogen bond connections between the anions and the cations in the crystals of (1) and (2).



**Figure S8**. The powder diffraction pattern (range  $2\theta$  7–43°) for (**2**) obtained in the dehydration process of (**1**) performed on a Boetius PHMK apparatus at 390 K.



**Figure S9.** The TGA curve for (1) (m = 3.1800 mg).



Figure S10. Hydrogen bond connections between the anions and the cations in the crystals of (3) and (4).



Figure S11. The TGA curve for (3) (m = 8.504 mg).



Figure S12. Hydrogen bond connections between the anions and the cation in the crystal of (5).

| P1A—O1A                  | 1.5017(8) | P2A—O6A                                                                      | 1.5645(8) |
|--------------------------|-----------|------------------------------------------------------------------------------|-----------|
| P1 <i>A</i> —O2 <i>A</i> | 1.5202(7) | P1 <i>B</i> —O1 <i>B</i>                                                     | 1.4879(8) |
| P1 <i>A</i> —O3 <i>A</i> | 1.5652(8) | P1 <i>B</i> —O2 <i>B</i>                                                     | 1.5454(8) |
| P1A—P2A                  | 2.1842(5) | P1 <i>B</i> —O3 <i>B</i>                                                     | 1.5489(7) |
| P2A—O4A                  | 1.5012(8) | $P1B$ — $P1B^i$                                                              | 2.1827(6) |
| P2A—O5A                  | 1.5110(9) |                                                                              |           |
| O1A—P1A—O2A              | 114.51(4) | O4A—P2A—P1A                                                                  | 107.98(4) |
| O1A—P1A—O3A              | 112.15(4) | O5A—P2A—P1A                                                                  | 108.03(3) |
| O2A—P1A—O3A              | 107.32(4) | O6A—P2A—P1A                                                                  | 104.47(3) |
| O1A—P1A—P2A              | 108.11(3) | O1 <i>B</i> —P1 <i>B</i> —O2 <i>B</i>                                        | 114.43(5) |
| O2A—P1A—P2A              | 107.27(3) | O1 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>                                        | 113.34(5) |
| O3A—P1A—P2A              | 107.13(4) | O2 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>                                        | 104.78(4) |
| O4A—P2A—O5A              | 117.05(5) | O1 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>i</sup>                           | 110.91(4) |
| O4A—P2A—O6A              | 112.80(4) | O2 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>i</sup>                           | 106.89(4) |
| O5A—P2A—O6A              | 105.72(5) | O3 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>i</sup>                           | 105.85(3) |
| O1A—P1A—P2A—O4A          | 43.59(4)  | $O1B$ — $P1B$ — $P1B^{i}$ — $O1B^{i}$                                        | 180       |
| O2A—P1A—P2A—O4A          | -80.38(5) | O2B—P1B—P1B <sup>i</sup> —O1B <sup>i</sup>                                   | 54.63(5)  |
| O3A—P1A—P2A—O4A          | 164.66(4) | $O3B$ — $P1B$ — $P1B^{i}$ — $O1B^{i}$                                        | -56.68(5) |
| O1A—P1A—P2A—O5A          | 171.07(4) | $O1B$ — $P1B$ — $P1B^{i}$ — $O2B^{i}$                                        | -54.63(5) |
| O2A—P1A—P2A—O5A          | 47.10(4)  | $O2B$ —P1B—P1B <sup>i</sup> — $O2B^i$                                        | 180       |
| O3A—P1A—P2A—O5A          | -67.87(5) | $O3B$ — $P1B$ — $P1B^{i}$ — $O2B^{i}$                                        | 68.69(5)  |
| O1A—P1A—P2A—O6A          | -76.71(4) | O1 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>i</sup> —O3 <i>B</i> <sup>i</sup> | 56.68(5)  |
| O2A—P1A—P2A—O6A          | 159.32(4) | O2B—P1B—P1B <sup>i</sup> —O3B <sup>i</sup>                                   | -68.69(5) |
| O3A—P1A—P2A—O6A          | 44.35(5)  | O3B—P1B—P1B <sup>i</sup> —O3B <sup>i</sup>                                   | 180       |

Table S1. Selected geometric parameters (Å, °) for (1)-HTP

Symmetry code: (i) -x, -y, -z+1.

| P1A—O1A                                            | 1.5038(7) | P2 <i>B</i> —O4 <i>B</i>                           | 1.4916(7)  |
|----------------------------------------------------|-----------|----------------------------------------------------|------------|
| P1A—O2A                                            | 1.5224(7) | P2B—O5B                                            | 1.5434(7)  |
| P1 <i>A</i> —O3 <i>A</i>                           | 1.5667(7) | P2 <i>B</i> —O6 <i>B</i>                           | 1.5530(7)  |
| P1 <i>A</i> —P2 <i>A</i>                           | 2.1837(5) | P1 <i>C</i> —O1 <i>C</i>                           | 1.5077(7)  |
| P2A—O4A                                            | 1.5047(7) | P1 <i>C</i> —O2 <i>C</i>                           | 1.5144(7)  |
| P2A—O5A                                            | 1.5105(7) | P1 <i>C</i> —O3 <i>C</i>                           | 1.5624(8)  |
| P2A—O6A                                            | 1.5676(8) | P1 <i>C</i> —P2 <i>C</i>                           | 2.1836(5)  |
| P1 <i>B</i> —O1 <i>B</i>                           | 1.4918(7) | P2 <i>C</i> —O4 <i>C</i>                           | 1.5051(7)  |
| P1 <i>B</i> —O2 <i>B</i>                           | 1.5483(7) | P2C—O5C                                            | 1.5212(7)  |
| P1 <i>B</i> —O3 <i>B</i>                           | 1.5515(7) | P2C—O6C                                            | 1.5678(7)  |
| P1 <i>B</i> —P2 <i>B</i>                           | 2.1834(5) |                                                    |            |
| O1A—P1A—O2A                                        | 114.37(4) | O4 <i>B</i> —P2 <i>B</i> —O5 <i>B</i>              | 115.11(4)  |
| O1A—P1A—O3A                                        | 112.28(4) | O4 <i>B</i> —P2 <i>B</i> —O6 <i>B</i>              | 112.83(4)  |
| O2A—P1A—O3A                                        | 107.59(4) | O5 <i>B</i> —P2 <i>B</i> —O6 <i>B</i>              | 105.28(4)  |
| O1A—P1A—P2A                                        | 108.21(3) | O4 <i>B</i> —P2 <i>B</i> —P1 <i>B</i>              | 110.76(4)  |
| O2A—P1A—P2A                                        | 106.70(3) | O5B—P2B—P1B                                        | 106.49(3)  |
| O3A—P1A—P2A                                        | 107.32(3) | O6 <i>B</i> —P2 <i>B</i> —P1 <i>B</i>              | 105.69(3)  |
| O4A—P2A—O5A                                        | 117.06(4) | 01 <i>C</i> —P1 <i>C</i> —02 <i>C</i>              | 116.65(4)  |
| O4A—P2A—O6A                                        | 112.59(4) | 01 <i>C</i> —P1 <i>C</i> —O3 <i>C</i>              | 113.05(4)  |
| O5A—P2A—O6A                                        | 105.99(4) | O2 <i>C</i> —P1 <i>C</i> —O3 <i>C</i>              | 106.28(4)  |
| O4A—P2A—P1A                                        | 107.76(3) | 01 <i>C</i> —P1 <i>C</i> —P2 <i>C</i>              | 107.99(3)  |
| O5A—P2A—P1A                                        | 107.82(3) | O2 <i>C</i> —P1 <i>C</i> —P2 <i>C</i>              | 108.05(3)  |
| O6A—P2A—P1A                                        | 104.89(4) | O3 <i>C</i> —P1 <i>C</i> —P2 <i>C</i>              | 104.01(4)  |
| O1 <i>B</i> —P1 <i>B</i> —O2 <i>B</i>              | 113.86(4) | O4 <i>C</i> —P2 <i>C</i> —O5 <i>C</i>              | 114.49(4)  |
| O1 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>              | 113.96(4) | O4 <i>C</i> —P2 <i>C</i> —O6 <i>C</i>              | 112.14(4)  |
| O2 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>              | 104.49(4) | O5 <i>C</i> —P2 <i>C</i> —O6 <i>C</i>              | 107.42(4)  |
| O1 <i>B</i> —P1 <i>B</i> —P2 <i>B</i>              | 110.74(4) | O4 <i>C</i> —P2 <i>C</i> —P1 <i>C</i>              | 107.98(3)  |
| O2 <i>B</i> —P1 <i>B</i> —P2 <i>B</i>              | 105.96(3) | O5 <i>C</i> —P2 <i>C</i> —P1 <i>C</i>              | 107.63(3)  |
| O3 <i>B</i> —P1 <i>B</i> —P2 <i>B</i>              | 107.24(3) | O6 <i>C</i> —P2 <i>C</i> —P1 <i>C</i>              | 106.83(3)  |
| O1 <i>A</i> —P1 <i>A</i> —P2 <i>A</i> —O4 <i>A</i> | 43.02(4)  | O3 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O5 <i>B</i> | -179.89(3) |
| O2A—P1A—P2A—O4A                                    | -80.50(4) | O1 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O6 <i>B</i> | 56.64(4)   |
| O3A—P1A—P2A—O4A                                    | 164.40(4) | O2 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O6 <i>B</i> | -179.43(3) |
| O1A—P1A—P2A—O5A                                    | 170.22(4) | O3 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O6 <i>B</i> | -68.26(4)  |
| O2A—P1A—P2A—O5A                                    | 46.70(4)  | O1 <i>C</i> —P1 <i>C</i> —P2 <i>C</i> —O4 <i>C</i> | -43.50(4)  |
| O3A—P1A—P2A—O5A                                    | -68.40(4) | O2 <i>C</i> —P1 <i>C</i> —P2 <i>C</i> —O4 <i>C</i> | -170.49(4) |
| O1A—P1A—P2A—O6A                                    | -77.14(4) | O3 <i>C</i> —P1 <i>C</i> —P2 <i>C</i> —O4 <i>C</i> | 76.86(4)   |
| O2A—P1A—P2A—O6A                                    | 159.33(4) | O1 <i>C</i> —P1 <i>C</i> —P2 <i>C</i> —O5 <i>C</i> | 80.59(4)   |
| O3A—P1A—P2A—O6A                                    | 44.24(4)  | O2C—P1C—P2C—O5C                                    | -46.41(4)  |

Table S2. Selected geometric parameters (Å, °) for (1)-LTP

| O1 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O4 <i>B</i> | 179.16(4) | O3C—P1C—P2C—O5C                                    | -159.06(4) |
|----------------------------------------------------|-----------|----------------------------------------------------|------------|
| O2 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O4 <i>B</i> | -56.91(4) | O1 <i>C</i> —P1 <i>C</i> —P2 <i>C</i> —O6 <i>C</i> | -164.30(4) |
| O3 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O4 <i>B</i> | 54.26(4)  | O2 <i>C</i> —P1 <i>C</i> —P2 <i>C</i> —O6 <i>C</i> | 68.70(4)   |
| O1 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O5 <i>B</i> | -55.00(4) | O3C—P1C—P2C—O6C                                    | -43.95(4)  |
| O2 <i>B</i> —P1 <i>B</i> —P2 <i>B</i> —O5 <i>B</i> | 68.93(4)  |                                                    |            |

Table S3. Selected geometric parameters (Å, °) for (2)

| P1A—01A                  | 1.483(4)   | P2A—O6A                                            | 1.563(4)   |
|--------------------------|------------|----------------------------------------------------|------------|
| P1A—O2A                  | 1.551(4)   | P1 <i>B</i> —O1 <i>B</i>                           | 1.510(3)   |
| P1A—O3A                  | 1.558(4)   | P1 <i>B</i> —O2 <i>B</i>                           | 1.511(3)   |
| P1 <i>A</i> —P2 <i>A</i> | 2.1837(18) | P1 <i>B</i> —O3 <i>B</i>                           | 1.566(4)   |
| P2A—O4A                  | 1.501(4)   | P1 <i>B</i> —P1 <i>B</i> <sup>i</sup>              | 2.189(2)   |
| P2A—O5A                  | 1.504(4)   |                                                    |            |
| O1A—P1A—O2A              | 115.4(2)   | O4A—P2A—P1A                                        | 108.92(17) |
| O1A—P1A—O3A              | 115.4(2)   | O5A—P2A—P1A                                        | 106.16(16) |
| O2A—P1A—O3A              | 101.3(2)   | O6A—P2A—P1A                                        | 105.63(16) |
| O1A—P1A—P2A              | 110.69(17) | O1 <i>B</i> —P1 <i>B</i> —O2 <i>B</i>              | 114.2(2)   |
| O2A—P1A—P2A              | 106.04(16) | O1 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>              | 108.8(2)   |
| O3A—P1A—P2A              | 107.17(16) | O2 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>              | 110.9(2)   |
| O4A—P2A—O5A              | 117.1(2)   | O1 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>i</sup> | 108.77(16) |
| O4A—P2A—O6A              | 108.4(2)   | O2 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>i</sup> | 108.41(16) |
| O5A—P2A—O6A              | 110.0(2)   | O3 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>i</sup> | 105.39(16) |
| O1A—P1A—P2A—O4A          | 77.9(3)    | $O1B$ — $P1B$ — $P1B^{i}$ — $O1B^{i}$              | 180        |
| O2A—P1A—P2A—O4A          | -156.2(2)  | O2B—P1B—P1B <sup>i</sup> —O1B <sup>i</sup>         | 55.3(2)    |
| O3A—P1A—P2A—O4A          | -48.7(2)   | $O3B$ — $P1B$ — $P1B^{i}$ — $O1B^{i}$              | -63.5(2)   |
| O1A—P1A—P2A—O5A          | -49.0(2)   | O1B—P1B—P1B <sup>i</sup> —O2B <sup>i</sup>         | -55.3(2)   |
| O2A—P1A—P2A—O5A          | 76.8(2)    | $O2B$ —P1B—P1B <sup>i</sup> — $O2B^i$              | 180        |
| O3A—P1A—P2A—O5A          | -175.6(2)  | O3B—P1B—P1B <sup>i</sup> —O2B <sup>i</sup>         | 61.2(2)    |
| O1A—P1A—P2A—O6A          | -165.8(2)  | O1B—P1B—P1B <sup>i</sup> —O3B <sup>i</sup>         | 63.5(2)    |
| O2A—P1A—P2A—O6A          | -39.9(2)   | O2B—P1B—P1B <sup>i</sup> —O3B <sup>i</sup>         | -61.2(2)   |
| O3A—P1A—P2A—O6A          | 67.6(2)    | O3B—P1B—P1B <sup>i</sup> —O3B <sup>i</sup>         | 180        |
|                          |            |                                                    |            |

Symmetry code: (i) -x+1, -y+1, -z+1.

| <i>D</i> —H··· <i>A</i>                               | <i>D</i> —Н | H····A    | D····A     | <i>D</i> —Н···· <i>A</i> |
|-------------------------------------------------------|-------------|-----------|------------|--------------------------|
| O3A—H3PA…O1W                                          | 0.758(15)   | 1.839(16) | 2.5906(12) | 171.3(16)                |
| O6A—H6PA…O1A <sup>I</sup>                             | 0.880(14)   | 1.674(15) | 2.5253(10) | 161.9(14)                |
| О2 <i>B</i> —Н2 <i>PB</i> ⋯О5 <i>A</i> <sup>II</sup>  | 1.12(3)     | 1.36(3)   | 2.4745(10) | 179(2)                   |
| O3B—H3PB…O2A                                          | 1.03(2)     | 1.45(2)   | 2.4648(12) | 167.8(19)                |
| N1A—H1N…O4A                                           | 0.927(19)   | 1.832(18) | 2.750(5)   | 170.3(17)                |
| N3A—H3A1…O1B <sup>III</sup>                           | 0.87        | 2.20      | 3.043(4)   | 165                      |
| N3A—H3A2…O5A <sup>IV</sup>                            | 0.87        | 2.51      | 3.283(4)   | 148                      |
| N3A—H3A2…O6A <sup>IV</sup>                            | 0.87        | 2.38      | 3.142(4)   | 146                      |
| <i>C4A</i> —H4 <i>A</i> ····O3 <i>A</i> <sup>IV</sup> | 0.94        | 2.59      | 3.443(4)   | 151                      |
| С6А—Н6А…О1А                                           | 0.94        | 2.56      | 3.296(5)   | 135                      |
| N1X—H1N…O4A                                           | 0.861(18)   | 1.832(18) | 2.668(5)   | 163.2(18)                |
| N3X—H3X1…O1B <sup>III</sup>                           | 0.87        | 2.35      | 3.132(4)   | 150                      |
| N3X—H3X2…O5A <sup>IV</sup>                            | 0.87        | 2.23      | 3.089(4)   | 170                      |
| <i>C4X</i> —H4 <i>X</i> ····O3 <i>A</i> <sup>IV</sup> | 0.94        | 2.56      | 3.445(4)   | 157                      |
| С6Х—Н6Х…О1А                                           | 0.94        | 2.47      | 3.262(4)   | 142                      |
| N1B—H1NB…O1B                                          | 0.880(16)   | 1.797(16) | 2.6623(13) | 167.2(16)                |
| N3B—H3B1…O1A <sup>V</sup>                             | 0.972(15)   | 2.026(16) | 2.9571(14) | 159.9(12)                |
| N3B—H3B2…O2A <sup>VI</sup>                            | 1.033(16)   | 1.974(16) | 2.9682(14) | 160.6(13)                |
| $C2B$ —H2 $B$ ····O1 $W^{V}$                          | 0.94        | 2.41      | 3.3502(17) | 177                      |
| <i>С4В</i> —Н4 <i>В</i> …О2 <i>В</i> <sup>IV</sup>    | 0.94        | 2.62      | 3.3698(17) | 137                      |
| <i>С6В</i> —Н6 <i>В</i> …О5 <i>А</i> <sup>VII</sup>   | 0.94        | 2.44      | 3.1996(15) | 138                      |
| O1W—H1W1…O3B <sup>VIII</sup>                          | 0.83        | 1.96      | 2.786      | 170                      |
| $O1W - H1W2 \cdots O4A^{I}$                           | 0.83        | 1.94      | 2.7653(11) | 172                      |

Table S4. Hydrogen-bond geometry (Å, °) for (1)-HTP

Symmetry codes: (i) -*x*, -*y*+1, -*z*+2; (ii) -*x*, -*y*, -*z*+1; (iii) *x*, *y*+1, *z*; (iv) *x*+1, *y*+1, *z*; (v) *x*, *y*, *z*-1; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) *x*+1, *y*, *z*; (viii) -*x*, -*y*, -*z*+2.

| <i>D</i> —H··· <i>A</i>                               | <i>D</i> —Н | H····A    | D····A     | <i>D</i> —Н··· <i>A</i> |
|-------------------------------------------------------|-------------|-----------|------------|-------------------------|
| O3A—H3PA…O1W                                          | 0.859(16)   | 1.725(16) | 2.580      | 173.2(16)               |
| O6A—H6PA…O4C <sup>I</sup>                             | 0.749(17)   | 1.795(18) | 2.5199(10) | 162.7(18)               |
| O2 <i>B</i> —H2 <i>PB</i> ⋯O2 <i>A</i>                | 0.80(2)     | 1.67(2)   | 2.4485(10) | 165(2)                  |
| O3 <i>B</i> —H3 <i>PB</i> ⋯O2 <i>C</i>                | 1.09(2)     | 1.37(2)   | 2.4658(10) | 178(2)                  |
| О5 <i>B</i> —Н5 <i>PB</i> …О5А                        | 1.19(3)     | 1.26(3)   | 2.4551(10) | 177(2)                  |
| О6 <i>B</i> —Н6 <i>PB</i> …О5 <i>C</i>                | 0.81(2)     | 1.66(2)   | 2.4609(10) | 166(2)                  |
| ОЗС—H3PC…О1А <sup>II</sup>                            | 0.757(18)   | 1.788(19) | 2.5217(10) | 162.9(19)               |
| О6 <i>С</i> —Н6 <i>РС</i> …О2 <i>W</i>                | 0.834(16)   | 1.740(16) | 2.570      | 173.4(16)               |
| N1A—H1NA…O4A                                          | 0.853(14)   | 1.857(15) | 2.6964(11) | 167.5(14)               |
| N3A—H3A1…O6A <sup>III</sup>                           | 0.825(15)   | 2.312(16) | 3.0766(12) | 154.4(14)               |
| N3A—H3A2…O4B <sup>IV</sup>                            | 0.859(15)   | 2.197(15) | 3.0500(12) | 171.8(13)               |
| <i>С4А</i> —Н4 <i>А</i> …О6 <i>А</i> Ш                | 0.95        | 2.60      | 3.3431(13) | 135                     |
| С6А—Н6А…О1А                                           | 0.95        | 2.52      | 3.2767(12) | 137                     |
| N1B—H1NB…O1B                                          | 0.884(13)   | 1.774(13) | 2.6551(11) | 174.7(13)               |
| N3B—H3B1…O5C <sup>III</sup>                           | 0.941(14)   | 2.050(14) | 2.9689(12) | 165.0(12)               |
| N3B—H3B2…O4C <sup>V</sup>                             | 0.975(17)   | 2.039(18) | 2.9723(11) | 159.5(14)               |
| $C2B$ —H2 $B$ ····O2 $W^{V}$                          | 0.95        | 2.35      | 3.3016(13) | 176                     |
| <i>С4В</i> —Н4 <i>В</i> …О3 <i>В</i> Ш                | 0.95        | 2.56      | 3.2935(12) | 135                     |
| <i>С6В</i> —Н6 <i>В</i> ····О2 <i>С</i> <sup>VI</sup> | 0.95        | 2.48      | 3.2432(13) | 137                     |
| N1C—H1NC…O1C                                          | 0.837(13)   | 1.875(13) | 2.7046(11) | 170.9(13)               |
| $N3C$ — $H3C1$ ···· $O2C^{VII}$                       | 0.837(14)   | 2.191(14) | 3.0106(12) | 166.3(14)               |
| N3C—H3C2…O1B <sup>VIII</sup>                          | 0.878(13)   | 2.198(13) | 3.0668(13) | 169.8(11)               |
| $C2C$ —H2 $C$ ···O3 $B^{VIII}$                        | 0.95        | 2.53      | 3.4654(12) | 167                     |
| <i>С4С</i> —Н4 <i>С</i> ···О6 <i>С</i> <sup>VII</sup> | 0.95        | 2.53      | 3.4149(13) | 155                     |
| С6С—Н6С…О4С                                           | 0.95        | 2.47      | 3.2576(13) | 140                     |
| N1D—H1ND…O4B                                          | 0.855(15)   | 1.842(15) | 2.6675(11) | 161.7(15)               |
| $N3D$ — $H3D1$ ···O2 $A^{VII}$                        | 0.946(15)   | 2.021(15) | 2.9490(12) | 166.6(13)               |
| $N3D$ — $H3D2\cdots O1A^{IX}$                         | 0.981(17)   | 1.969(17) | 2.9131(11) | 160.7(13)               |
| $C2D$ —H2 $D$ ····O1 $W^{IX}$                         | 0.95        | 2.40      | 3.3488(14) | 174                     |
| $C4D$ —H4 $D$ ····O5 $B^{VII}$                        | 0.95        | 2.60      | 3.3874(12) | 140                     |
| <i>С6D</i> —Н6 <i>D</i> …О5 <i>A</i> <sup>X</sup>     | 0.95        | 2.40      | 3.1206(13) | 133                     |

Table S5. Hydrogen-bond geometry (Å, °) for (1)-LTP

Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) x-1, y, z; (iv) -x, -y+1, -z; (v) -x, -y+1, -z+1; (vi) -x, -y, -z+1; (vii) x+1, y, z; (viii) -x+1, -y, -z+1; (ix) -x+1, -y, -z; (x) -x+1, -y+1, -z.

| <i>D</i> —Н··· <i>A</i>                     | <i>D</i> —Н | H····A   | $D \cdots A$ | <i>D</i> —Н··· <i>A</i> |
|---------------------------------------------|-------------|----------|--------------|-------------------------|
| $O2A$ — $H2PA$ ···· $O1B^{I}$               | 0.73(7)     | 1.77(7)  | 2.501(5)     | 179(9)                  |
| <b>ОЗА—НЗРА</b> … <b>О</b> 4А <sup>II</sup> | 0.99(7)     | 1.56(7)  | 2.538(5)     | 169(6)                  |
| О6А—Н6РА…О2В                                | 0.73(7)     | 1.81(7)  | 2.532(5)     | 170(8)                  |
| О3 <i>В</i> —Н3 <i>РВ</i> ⋯О5А              | 0.73(10)    | 1.90(10) | 2.607(5)     | 162(11)                 |
| $N1A^{A-H1NA}A\cdots O1A^{III}$             | 0.88        | 1.93     | 2.804(9)     | 173                     |
| $N3A^{A-H3A1}A\cdots O2A$                   | 0.88        | 2.05     | 2.883(9)     | 157                     |
| $N3A^{A-H3A2}A\cdots O4A^{IV}$              | 0.88        | 1.93     | 2.808(9)     | 173                     |
| $C2A^{A-H2A}A\cdots O6A$                    | 0.95        | 2.45     | 3.398(17)    | 178                     |
| $C6A^{A-H6A}A\cdots O3A^{V}$                | 0.95        | 2.47     | 3.093(13)    | 123                     |
| $N1X^{B-H1NX}B\cdots O4A^{IV}$              | 0.88        | 1.91     | 2.779(13)    | 170                     |
| $N3X^{B-H3X1}B\cdots O6A$                   | 0.88        | 2.10     | 2.962(12)    | 167                     |
| $N3X^{B-H3X2}B\cdots O1A^{III}$             | 0.88        | 1.94     | 2.808(13)    | 168                     |
| $N1B^{B-H1NB}B\cdots O5A^{VI}$              | 0.80(7)     | 1.90(7)  | 2.683(6)     | 168(7)                  |
| $N3B^{B-H3B1}B\cdots O2B$                   | 0.91(7)     | 2.05(7)  | 2.928(6)     | 162(6)                  |
| $N3B^{B-H3B2}B\cdots O1B^{VII}$             | 0.81(6)     | 2.15(6)  | 2.937(6)     | 165(6)                  |

Table S6. Hydrogen-bond geometry (Å, °) for (2)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) x, y+1, z; (iv) x-1, y, z; (v) -x+1, -y+2, -z; (vi) x-1, y+1, z; (vii) -x+1, -y+2, -z+1.

| Temperature, K       | ( <b>1</b> )-LTP, % | ( <b>1</b> )-HTP, % | (2), % |
|----------------------|---------------------|---------------------|--------|
| 110                  | 100                 | 0                   | 0      |
| 295                  | 0                   | 98                  | 2      |
| 300                  | 0                   | 95                  | 5      |
| 305                  | 0                   | 91                  | 9      |
| 310                  | 0                   | 86                  | 14     |
| 315*                 | 0                   | 79                  | 21     |
| 320*                 | 0                   | 70                  | 30     |
| 325*                 | 0                   | 61                  | 39     |
| 330*                 | 0                   | 50                  | 50     |
| 330 (after 3 hours)* | 0                   | 0                   | 100    |

**Table S7.** Temperature dependence of sample composition during  $(1) \rightarrow (2)$  dehydration as refined by Rietveld method (unknown decomposition product content is not taken into account).

\* - unknown impurity is present in the sample

| P1A—O1A                                    | 1.5229(10) | P1 <i>B</i> —O1 <i>B</i>                                                       | 1.5012(10) |
|--------------------------------------------|------------|--------------------------------------------------------------------------------|------------|
| P1 <i>A</i> —O2 <i>A</i>                   | 1.5259(10) | P1 <i>B</i> —O2 <i>B</i>                                                       | 1.5165(10) |
| P1 <i>A</i> —O3 <i>A</i>                   | 1.5378(10) | P1 <i>B</i> —O3 <i>B</i>                                                       | 1.5760(10) |
| P1A—P1A <sup>i</sup>                       | 2.1884(7)  | P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup>                                         | 2.1922(7)  |
| O1A—P1A—O2A                                | 112.45(6)  | O1 <i>B</i> —P1 <i>B</i> —O2 <i>B</i>                                          | 116.57(6)  |
| O1A—P1A—O3A                                | 112.00(6)  | O1 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>                                          | 111.40(6)  |
| O2A—P1A—O3A                                | 110.35(6)  | O2 <i>B</i> —P1 <i>B</i> —O3 <i>B</i>                                          | 106.42(6)  |
| O1A—P1A—P1A <sup>i</sup>                   | 107.84(5)  | O1 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup>                            | 108.96(5)  |
| O2A—P1A—P1A <sup>i</sup>                   | 106.73(4)  | O2 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup>                            | 108.00(4)  |
| O3A—P1A—P1A <sup>i</sup>                   | 107.16(5)  | O3 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup>                            | 104.79(4)  |
| O1A—P1A—P1A <sup>i</sup> —O1A <sup>i</sup> | 180        | O1 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O1 <i>B</i> <sup>ii</sup> | 180        |
| O2A—P1A—P1A <sup>i</sup> —O1A <sup>i</sup> | 58.96(6)   | O2 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O1 <i>B</i> <sup>ii</sup> | 52.48(7)   |
| O3A—P1A—P1A <sup>i</sup> —O1A <sup>i</sup> | -59.26(7)  | O3 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O1 <i>B</i> <sup>ii</sup> | -60.67(6)  |
| O1A—P1A—P1A <sup>i</sup> —O2A <sup>i</sup> | -58.96(6)  | O1 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O2 <i>B</i> <sup>ii</sup> | -52.48(7)  |
| O2A—P1A—P1A <sup>i</sup> —O2A <sup>i</sup> | 180        | O2 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O2 <i>B</i> <sup>ii</sup> | 180        |
| O3A—P1A—P1A <sup>i</sup> —O2A <sup>i</sup> | 61.78(6)   | O3 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O2 <i>B</i> <sup>ii</sup> | 66.84(6)   |
| O1A—P1A—P1A <sup>i</sup> —O3A <sup>i</sup> | 59.26(7)   | O1 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O3 <i>B</i> <sup>ii</sup> | 60.67(6)   |
| O2A—P1A—P1A <sup>i</sup> —O3A <sup>i</sup> | -61.78(6)  | O2 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O3 <i>B</i> <sup>ii</sup> | -66.84(6)  |
| O3A—P1A—P1A <sup>i</sup> —O3A <sup>i</sup> | 180        | O3 <i>B</i> —P1 <i>B</i> —P1 <i>B</i> <sup>ii</sup> —O3 <i>B</i> <sup>ii</sup> | 180        |

**Table S8.** Selected geometric parameters (Å,  $^{\circ}$ ) for (3)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

 Table S9. Selected geometric parameters (Å, °) for (4)

| P1-01       | 1.5102(19)  | P2—O4       | 1.501 (2)   |
|-------------|-------------|-------------|-------------|
| P1—O2       | 1.5227(19)  | P2—O5       | 1.515(2)    |
| P1—O3       | 1.5587(19)  | P2—O6       | 1.5678(19)  |
| P1—P2       | 2.1763(9)   |             |             |
| O1—P1—O2    | 115.49(11)  | O4—P2—O5    | 114.61(11)  |
| O1—P1—O3    | 108.47(10)  | O4—P2—O6    | 109.03(11)  |
| O2—P1—O3    | 111.18(11)  | O5—P2—O6    | 111.92(11)  |
| O1—P1—P2    | 110.06(8)   | O4—P2—P1    | 107.30(8)   |
| O2—P1—P2    | 104.16(8)   | O5—P2—P1    | 110.80(8)   |
| O3—P1—P2    | 107.13(8)   | O6—P2—P1    | 102.39(9)   |
| O1—P1—P2—O4 | 73.55(12)   | O3—P1—P2—O5 | 65.49(12)   |
| O2—P1—P2—O4 | -50.83(11)  | O1—P1—P2—O6 | -171.74(12) |
| O3—P1—P2—O4 | -168.71(12) | O2—P1—P2—O6 | 63.88(12)   |
| O1—P1—P2—O5 | -52.24(12)  | O3—P1—P2—O6 | -54.00(12)  |
| O2—P1—P2—O5 | -176.63(11) |             |             |
|             |             |             |             |

| <i>D</i> —Н··· <i>A</i>                | D—H     | Н…А     | D····A     | <i>D</i> —Н··· <i>A</i> |
|----------------------------------------|---------|---------|------------|-------------------------|
| ОЗ <i>В</i> —НЗ <i>РВ</i> …О1 <i>А</i> | 0.90(2) | 1.64(2) | 2.5314(14) | 170(2)                  |
| N1A—H1NA…O2A                           | 0.95(2) | 1.63(2) | 2.5671(16) | 169(2)                  |
| N3A—H3A1…O2B <sup>III</sup>            | 0.87(2) | 2.13(2) | 2.9762(17) | 164.3(18)               |
| N3A—H3A2…O1B <sup>IV</sup>             | 0.87(2) | 2.12(2) | 2.9606(17) | 162.6(17)               |
| $C2A$ —H2 $A$ ····O1 $A^{I}$           | 0.95    | 2.41    | 3.1899(18) | 140                     |
| $C4A$ —H4 $A$ ····O1 $B^{IV}$          | 0.95    | 2.50    | 3.2769(18) | 139                     |
| N1B—H1NB…O3A                           | 1.08(2) | 1.45(3) | 2.5206(16) | 174(2)                  |
| N3B—H3B1…O2B <sup>I</sup>              | 0.85(2) | 2.59(2) | 3.3158(18) | 144.2(16)               |
| N3B—H3B1…O3B <sup>I</sup>              | 0.85(2) | 2.55(2) | 3.3002(18) | 148.7(16)               |
| N3B—H3B2…O1W <sup>V</sup>              | 0.86(2) | 2.00(2) | 2.8503(18) | 168.0(18)               |
| $C2B$ —H2 $B$ ····O3 $B^{I}$           | 0.95    | 2.37    | 3.2427(19) | 152                     |
| N1C—H1NC…O2B                           | 0.95(2) | 1.67(2) | 2.6138(16) | 171.7(19)               |
| $N3C$ — $H3C1\cdots O1W^{VI}$          | 0.83(2) | 2.05(2) | 2.8646(19) | 167.9(19)               |
| N3C—H3C2…O3A <sup>II</sup>             | 0.86(2) | 2.07(2) | 2.9063(19) | 162.4(19)               |
| $C2C$ —H2 $C$ ····O1 $A^{II}$          | 0.95    | 2.48    | 3.4217(19) | 174                     |
| O1W—H1W1…O1B                           | 0.84    | 1.87    | 2.7058(14) | 176                     |
| O1W—H1W2…O2A                           | 0.84    | 1.88    | 2.7155(14) | 177                     |

Table S10. Hydrogen-bond geometry (Å, °) for (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) *x*+1, -*y*+1/2, *z*+1/2; (v) -*x*+1, *y*+1/2, -*z*+1/2; (vi) -*x*, *y*+1/2, -*z*+3/2.

| <i>D</i> —Н··· <i>A</i>                    | D—H     | H···A   | D····A   | <i>D</i> —Н··· <i>A</i> |
|--------------------------------------------|---------|---------|----------|-------------------------|
| 03—H3P…N1A                                 | 0.84    | 1.77    | 2.556(3) | 155                     |
| O6—H6P…O1 <sup>I</sup>                     | 0.84    | 1.79    | 2.549(3) | 149                     |
| N3A—H3A1…O5 <sup>II</sup>                  | 0.90(5) | 2.23(4) | 3.083(3) | 159(4)                  |
| $N3A - H3A2 \cdots O2^{I}$                 | 0.89(4) | 2.08(4) | 2.934(3) | 161(3)                  |
| <i>С4А</i> —Н4А…ОЗ <sup>Ш</sup>            | 0.95    | 2.58    | 3.176(4) | 121                     |
| <i>С5А</i> —H5 <i>А</i> …О3 <sup>III</sup> | 0.95    | 2.59    | 3.178(4) | 121                     |
| $N1B$ — $H1NB$ ···· $O2^{I}$               | 1.05(4) | 1.54(4) | 2.589(3) | 175(4)                  |
| N3B—H3B1…O4 <sup>IV</sup>                  | 0.87(4) | 1.93(4) | 2.783(3) | 168(3)                  |
| N3B—H3B2…O2                                | 0.84(4) | 2.13(4) | 2.945(3) | 165(4)                  |
| <i>С2В</i> —Н2 <i>В</i> …О6                | 0.95    | 2.39    | 3.272(3) | 154                     |
| N1C—H1NC…O5 <sup>v</sup>                   | 0.92(4) | 1.69(4) | 2.609(3) | 174(4)                  |
| N3C—H3C1…O4 <sup>VI</sup>                  | 0.83(4) | 2.01(4) | 2.812(3) | 162(4)                  |
| N3C—H3C2…O5                                | 0.95(5) | 2.09(4) | 3.005(3) | 161(4)                  |
| С2С—Н2С…О1                                 | 0.95    | 2.31    | 3.154(3) | 147                     |

Table S11. Hydrogen-bond geometry (Å, °) for (4)

Symmetry codes: (i) x-1/2, -y+1/2, z; (ii) -x+1/2, y+1/2, z+1/2; (iii) -x+1, -y+1, z+1/2; (iv) -x+1, -y, z+1/2; (v) x+1/2, -y+1/2, z; (vi) -x+1, -y, z-1/2.

| Temperature, K          | (3), % | (4), % |
|-------------------------|--------|--------|
| 100                     | 100    | 0      |
| 295                     | 100    | 0      |
| 300                     | 100    | 0      |
| 305                     | 100    | 0      |
| 310                     | 100    | 0      |
| 315                     | 100    | 0      |
| 320                     | 100    | 0      |
| 325                     | 100    | 0      |
| 330                     | 100    | 0      |
| 335                     | 96     | 4      |
| 340                     | 91     | 9      |
| 345                     | 84     | 16     |
| 350                     | 74     | 26     |
| 355*                    | 57     | 43     |
| 360*                    | 32     | 68     |
| 360 (after 30 minutes)* | 19     | 81     |

**Table S12.** Temperature dependence of sample composition during  $(3) \rightarrow (4)$  dehydration as refined by Rietveld method (unknown decomposition product content is not taken into account).

\* - unknown impurity is present in the sample

 Table S13. Selected geometric parameters (Å, °) for (5)

| P101        | 1.5012(18) | P2—O4       | 1.5022(19) |
|-------------|------------|-------------|------------|
| P1—O2       | 1.5250(16) | P2—O5       | 1.5217(17) |
| P1—O3       | 1.581(2)   | P206        | 1.5811(18) |
| P1—P2       | 2.1914(11) |             |            |
| O1—P1—O2    | 116.85(10) | O4—P2—O5    | 115.90(10) |
| O1—P1—O3    | 111.58(10) | O4—P2—O6    | 109.39(11) |
| O2—P1—O3    | 106.78(10) | O5—P2—O6    | 108.90(10) |
| O1—P1—P2    | 105.22(7)  | O4—P2—P1    | 106.53(8)  |
| O2—P1—P2    | 108.87(7)  | O5—P2—P1    | 107.23(8)  |
| O3—P1—P2    | 107.16(7)  | O6—P2—P1    | 108.65(7)  |
| O1—P1—P2—O4 | 46.50 (11) | O3—P1—P2—O5 | 40.69(11)  |
| O2—P1—P2—O4 | -79.49(11) | O1—P1—P2—O6 | 164.25(11) |
| O3—P1—P2—O4 | 165.37(10) | O2—P1—P2—O6 | 38.27(12)  |
| O1—P1—P2—O5 | -78.19(11) | O3—P1—P2—O6 | -76.88(11) |
| O2—P1—P2—O5 | 155.83(11) |             |            |
|             |            |             |            |

| <i>D</i> —Н··· <i>A</i>          | <i>D</i> —Н | H…A     | D····A   | <i>D</i> —Н…А |
|----------------------------------|-------------|---------|----------|---------------|
| O3—H3P…O5 <sup>1</sup>           | 0.82(4)     | 1.77(4) | 2.582(3) | 168(4)        |
| О6—H6 <i>P</i> …О2 <sup>II</sup> | 0.92(5)     | 1.65(5) | 2.573(3) | 176(4)        |
| N1—H1 <i>N</i> …O2               | 0.91(4)     | 1.73(4) | 2.630(3) | 174(3)        |
| N3—H3N2…O1 <sup>III</sup>        | 0.91        | 1.80    | 2.704(3) | 171           |
| N3—H3N1…O4 <sup>IV</sup>         | 0.91        | 1.80    | 2.699(3) | 167           |
| N3—H3C…O5 <sup>v</sup>           | 0.91        | 1.82    | 2.718(3) | 171           |
| С2—Н2…О1 <sup>ш</sup>            | 0.95        | 2.39    | 3.131(3) | 134           |
| C4—H4…O6 <sup>IV</sup>           | 0.95        | 2.46    | 3.375(3) | 162           |
| С5—Н5…О5 <sup>VI</sup>           | 0.95        | 2.43    | 3.381(3) | 174           |

Table S14. Hydrogen-bond geometry (Å, °) for (5)

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*; (v) *x*-1, *y*+1, *z*; (vi) -*x*+1, -*y*, -*z*.