Supporting Information

Fabrication of core-shelled liquid-metal@silica nanoparticles for enhanced mechanical, dielectric and thermal properties of silicone rubber

Guizhi Zhu,^{a,b,‡} Yuliang Tian,^{a,b,‡} Junrui Tan,^{b,c} Qiong Wu,^{b,c} Longfei Tan,^{b,c} Xiangling Ren,^{b,c} Changhui Fu^{b,c} Zhihui Chen,^b and Xianwei Meng^{b,c}*

^a School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.

^b Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing, 100190, P. R. China.

^c Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, PR China

Figure S1. SEM images and particle size distribution of liquid metal nanodroplet:(a) (e)60min; (b) (f) 120 min; (c) (g) 180 min.

	Table S1.	Compositions	of the	reaction	mixtures
--	-----------	--------------	--------	----------	----------

	Samples	LM	Ammonia water	Ethanol	TEOS
-	LM@SiO ₂ -1	200mg	3ml	60ml	150ul
	LM@SiO ₂ -2	200mg	3ml	60ml	300ul
	LM@SiO ₂ -3	200mg	3ml	60ml	500ul
	LM@SiO ₂ -4	200mg	3ml	60ml	1000ul

Figure S2. TEM images of LM@SiO₂-NH₂ of different polymer shell thickness: (a)LM@SiO₂-1 (b)LM@SiO₂-2 (c)LM@SiO₂-3 (d) LM@SiO₂-4.

Figure S3. LM@SiO₂-2 and LM@SiO₂-3 dispersion of nanodroplets in ethanol solvent within one week.

Sample	PDMS (g)	LM@SiO ₂ -NH ₂ (g)	LM@SiO ₂ (g)	LM (g)	SiO ₂ (g)	Total amount of filler (g)
PDMS	1.5	0	1	/	/	0
10 wt.% LM@SiO ₂ - NH ₂ /PDMS	1.5	0.167	1	/	1	0.167
20 wt.% LM@SiO ₂ - NH ₂ /PDMS	1.5	0.375	1	1	/	0.375
40 wt.% LM@SiO ₂ - NH ₂ /PDMS	1.5	1	1	1	1	1
40 wt.% LM@SiO ₂ /PDMS	1.5	/	1	/	/	1
40 wt.% LM+SiO ₂ /PDMS	1.5	1	1	0.333	0.667	1

Table S2. Components of Silicone Rubbers

Figure S4. SEM of fracture sections of (a) LM@SiO₂-NH₂/PDMS nanocomposites (b) LM@SiO₂/PDMS nanocomposites.

Composites	Dielectric Constant	Dielectric Loss	Reference
CCTO@PANI/ PDMS	4.2	0.03	31
PVDF/ZnO-APTES	11	0.01	32
PDMS- PbZr0.52Ti0.48O3(PZT)	10.5	0.75	33
Calcium copper titanate(CCTO)/ PDMS	4.18	0.05	34
Coral-like BaTiO ₃ / PDMS	10.97	1.1	35
LM@SiO2- NH2/PDMS	13.9	0.006	This study

Table S3. Comparison of dielectric properties between different polymer composites

Figure S5. (a) Dielectric properties of LM@SiO₂-NH₂/PDMS and LM+SiO₂/PDMS, (b) dielectric constant of LM@SiO₂-NH₂/PDMS composites under different mass fractions.

Figure S6. Optical photograph of 60 wt% and 80 wt% of LM@SiO₂-NH₂/PDMS

Figure S7. Thermal conductivity of LM@SiO₂-NH₂/PDMS composites under different mass fractions.