Mechanochemical screening of drug-drug eutectics of the antibacterial agent, linezolid

Cinu Winson and Sunil Varughese *

Supporting Information

	Contents	Page No.
\triangleright	Experimental details	3-5
Figure S1	HSM images	6
Figure S2	Binary Phase Diagram	7
Figure S3	FTIR Spectra	8-11
Figure S4	PXRD Results	12
Figure S5	DSC results	13
Figure S6	SEM images	14
Figure S7	Statistical representation of solubility	15
Figure S8	The hardness of the tablet prepared at 75 kg/cm ² of pressure.	15
Figure S9	MESP Analysis	16
Table S1	CCDC Search result	17
Table S2	Melting Temperature of Multicomponent system	17
Table S3	Corresponding values of solubility	18-21
Table S4	Availability of LZD in eutectic mixture	22
Table S5	Availability of coformer drug in eutectic mixture	22

Experimental details

Materials:

The APIs are purchased from various suppliers, and used without further purification. The HPLC grade methanol from Merck (99.9% pure) was used for liquid-assisted grinding.

Mechanochemical Synthesis by LAG:

For the preparation of solid forms performing LAG with methanol using LABINDIA MM1100 Micro Ball Mill. All the drug-drug combinations were prepared using the mechanochemical route in various stoichiometric ratios. For every LAG experiment, maintained the η value (solvent/solute) ranges between ~ 0.1- 0.5 μ L/ mg.

The LABINDIA micro ball mill is equipped with a 5 mL stainless steel jar and one 7 mm diameter grinding ball per jar milled at 900 rpm (15 Hz) for 30 min (3 cycles of 10 min). The resultant powder was analysed using PXRD and melting point to confirm whether it is a molecular complex or eutectic mixture.

Differential Scanning Calorimetry (DSC):

DSC thermogram acquired using a METTLER TOLEDO DSC (STARe system) unit. using 40 μ L aluminium crucibles with approximately 5-7 mg of the sample under a dynamic nitrogen atmosphere (40 mL/min) and a heating rate of 10 °C/min in the temperature range from 60 to 200°C.

Optical and Hot-Stage Microscope (HSM):

Based on the thermal information from the optical and Hot-Stage Microscope (HSM) studies, we constructed the phase diagram to determine the eutectic point. The binary phase diagrams correlate the melting temperatures of different drug compositions with respect to the mole fraction of LZD.

Powder X-ray Diffraction (PXRD)

On a Philips X' pert Pro with Cu K radiation (1.54056) at room temperature, we measured the diffractions experiments for the drug-drug combinations at varying stoichiometric proportions. Further, we collected the diffraction data of the materials post-dissolution (after 24 hours) to determine their phase stability.

That is LZD-HAD, LZD-ASA, LZD-IND, LZD-PHE, LZD-OSB, LZD-SMX, and, LZD-STZ, in 1:1,2:1,2:3,3:7,1:1,1:1, and, 2:1 respectively.

Scanning Electron Microscopy (SEM):

Micrographs were obtained using a Hitachi Tabletop JEOL 5600 SL scanning electron microscope operated in the range of 5–30 kV. The samples were prepared by drop casting on silicon wafer pasted in a carbon double-sided adhesive tape fixed on the sample holder.

Fourier-Transform Infrared Spectroscopy (FTIR):

On a PerkinElmer Attenuated Total Reflectance (ATR) instrument, recorded Fourier transform infrared (FTIR) spectra at atmospheric conditions with a resolution of 4 cm⁻¹ and 32 scans. All samples used in data collection were in the form of solid powders and spectra were recorded in the wavenumber range 400–4000 cm⁻¹.

Solubility studies:

We assessed the solubility of drug-drug eutectic combinations in distilled water using pelletized samples obtained by compressing using a hydraulic press at a total force of 75 kg/cm². The pellet shook continuously for 24 hours at a speed of 100 rpm using an orbital benchtop shaker and the absorbance value was measured at 250 nm using a Shimadzu UV-1800 spectrophotometer. After 24 hours shaking, the slurry was separated as the residual of the solubility test for the stability confirmation studies.

Dissolution studies:

The dissolution tests of pelletized (75 kg/cm²) samples were carried out using the USP paddle method on a Microprocessor Dissolution test apparatus (Make: ESICO International, India). Each test used 900 mL of pH 6.8 phosphate buffer as the dissolution medium. The stirring speed was set to 75 rpm and the temperature was kept constant at 37 °C. In the dissolution medium, accurately weighed samples containing the 300 mg eutectic mixture and added 2.5% sodium starch glycolate. After 30 minutes, about 1 mL of solution was withdrawn and filtered with a syringe filter. HPLC was used to calculate the percentage of drug availability.

High-Performance Liquid Chromatography (HPLC) Analysis:

HPLC analysis was conducted on a Shimadzu LC-20AD HPLC system with a UV detection of 250 nm using a C18 column (Phenomenex 5 μ m × 4.6 mm × 250 mm column). The column temperature was set to 35 °C. The mobile phase consisted of a mixture of methanol and water solution 50% (v/v). The isocratic elution was used with a flow rate of 1 mL/min. We performed HPLC analysis on dissolution sample and pure drug (for preparing standared curve). Utilizing the standard curve of each, we determined the percentage availability of both LZD and coformer drugs.

Computational studies

By extracting CSD search, we gathered the LZD and coformer's recorded crystal structure. Before running the DFT calculations hydrogen atom positions in the cluster were normalized according to the standard neutron X-H bond lengths. Using the B3LYP hybrid density functional theory model, the conformational energies of the LZD were computed in Gaussian 16. For all atoms, used 6-311++g(d,p) basis set. and calculated the relative energy to optimise the stable conformation of the LZD among the three polymorphs. To demonstrate the likelihood of the creation of a eutectic mixture rather than a cocrystal, we used a variety of virtual cocrystal screening techniques, including the molecular complementarity tool (MCT), molecular electrostatic potential surface (MESP), and crystal structure prediction (CSP).

a) LHAD

Fig. S1 Hot stage microscopic images of the eutectic composits.

Fig. S2 Binary phase diagram of the eutectics of LZD with HAD, ASA, IND, PHE, OSB, SMX, and STZ. Solidus points are represented as black squares and liquidus points as red circles.

Fig. S3 IR Spectra of the eutectics of LZD with HAD, ASA

Fig. S3 (Contd.) IR Spectra of the eutectics of LZD with IND, PHE.

Fig. S3 (Contd.) IR Spectra of the eutectics of LZD with OSB, SMX.

Fig. S3 (Contd.) IR Spectra of the eutectics of LZD with STZ.

Fig. S4 PXRD pattern of the parent drug, drug-drug eutectics, and eutectic composite equilibrated for 24 hours.

Fig. S6 SEM micrographs of LZD and drug-drug eutectic mixtures.

Fig. S7 The experimentally determined solubility curve for 24 hours (1440 minutes).

Fig. S8 Hardness of the tablet of the eutectic composites. The tablets were prepared at 75 kg/cm^2 of pressure. (The eutectic mixtures for the tablet preparation were made by mechanochemical milling).

Fig. S9 MESP surfaces of the LZD and Coformer Drugs at the B3LYP/6-311 + G(d,p)/DGDZVP level of theory. The MESP maximum and minimum energies are indicated in kcal mol⁻¹.

Coformer	Name	CCDC Nos.	Cocrystal Formula
Structure			-
Соон	Benzoic Acid	1993998	C ₁₆ H ₂₀ F N ₃ O ₄ , C ₇ H ₆ O ₂
но соон	3,4,5-trihydroxybenzoic acid	1993999	C ₁₆ H ₂₀ F N ₃ O ₄ , C ₇ H ₆ O ₅ ,
но он	2,6-dihydroxybenzoic acid	1994001	H ₂ O C ₁₆ H ₂₀ F N ₃ O ₄ , C ₇ H ₆ O ₄
он но-Соон	4-hydroxybenzoic acid	1997194	C ₁₆ H ₂₀ F N ₃ O ₄ , C ₇ H ₆ O ₃ ,
но соон	3,4- dihydroxybenzoic acid	1994000	$\begin{array}{c} H_2 \ O \\ C_{16} \ H_{20} \ F \ N_3 \ O4, \\ C_7 H_6 O_4, \\ H_2 O \end{array}$

 Table S1 CCDC Search result using Conquest Software revised on NOV 2022

 Table S2 Melting Temperature multicomponent system.

	$T_{\rm m}$ (API)	$T_{\rm m}$ (mixture)	Remarks	Composition
	(40)	(10)		(mol % of LZD)
LZD (Form-II)	180			
LHAD	169	128	Eutectic	50
LASP	142	106	Eutectic	33
LIND	162	127	Eutectic	60
LPHE	135	120	Eutectic	30
LOSB	220	133	Eutectic	50
LSMX	170	121	Eutectic	50
LSTZ	200	138	Eutectic	33
LIBP	70	75, 143	Physical mixture	—
LSCP	204	155, 204	Physical mixture	—
LSPY	200	154, 200	Physical mixture	—
LSDX	218	155, 218	Physical mixture	_
LSDZ	214	180, 214	Physical mixture	—

*T*_m: melting temperature

Table S3 The aqueous solubility calculated from the measured absorbance, determinedsolubility, andstandard deviation is given below

SL NO	TIME	ABS.	CONC. (mg/ml)
1	5 min	0.020	0.237
2	10	0.044	0.518
3	15	0.059	0.693
4	20	0.073	0.855
5	30	0.088	1.030
6	45	0.114	1.335
7	60	0.156	1.824
8	120	0.192	2.242
9	180	0.228	2.652
10	360	0.241	2.805
11	600	0.254	2.954
12	1440	0.258	3.002

LZD

TIME	EXP 1	EXP 2	STDEV
		0.001	0.00 - /
5 min	0.020	0.031	0.0074
10	0.044	0.056	0.0085
15	0.059	0.077	0.0123
20	0.073	0.096	0.0161
30	0.088	0.112	0.0171
45	0.114	0.146	0.0222
60	0.156	0.157	0.0007
120	0.192	0.196	0.0023
180	0.228	0.222	0.0041
360	0.241	0.251	0.0072
600	0.254	0.260	0.0045
1440	0.258	0.265	0.0053

LHAD

SL NO	TIME	ABS.	CONC. (mg/ml)
1	5 min	0.129	1.506
2	10	0.182	2.122
3	15	0.219	2.556
4	20	0.239	2.779
5	30	0.283	3.291
6	45	0.296	3.449
7	60	0.3	3.489
8	120	0.414	4.814
9	180	0.556	6.472
10	360	0.827	9.623
11	600	0.969	11.269
12	1440	1.308	15.212

TIME	EXP 1	EXP 2	STDEV
5 min	0.129	0.125	0.0028
10	0.182	0.188	0.0039
15	0.219	0.239	0.0135
20	0.239	0.258	0.0140
30	0.283	0.318	0.0248
45	0.296	0.325	0.0200
60	0.3	0.347	0.0335
120	0.414	0.584	0.1205
180	0.556	0.618	0.0438
360	0.827	0.873	0.0321
600	0.969	0.918	0.0360
1440	1.308	1.192	0.0820

SL NO	TIME	ABS.	CONC. (mg/ml)
1	5 min	0.043	0.501
2	10	0.115	1.347
3	15	0.114	1.325
4	20	0.146	1.697
5	30	0.165	1.918
6	45	0.199	2.320
7	60	0.229	2.663
8	120	0.322	3.750
9	180	0.373	4.343
10	360	0.491	5.710
11	600	0.538	6.257
12	1440	0.561	6.530

TIME	EXP 1	EXP 2	STDEV
5 min	0.043	0.076	0.0236
10	0.115	0.116	0.0004
15	0.114	0.159	0.0321
20	0.146	0.173	0.0190
30	0.165	0.231	0.0470
45	0.199	0.262	0.0441
60	0.229	0.303	0.0523
120	0.322	0.379	0.0403
180	0.373	0.432	0.0413
360	0.491	0.473	0.0123
600	0.538	0.496	0.0293
1440	0.561	0.532	0.0208

LIND

SL NO	TIME	ABS.	CONC. (mg/ml)
1	5 min	0.033	0.383
2	10	0.057	0.662
3	15	0.062	0.721
4	20	0.066	0.767
5	30	0.074	0.860
6	45	0.078	0.907
7	60	0.096	1.116
8	120	0.105	1.221
9	180	0.164	1.907
10	360	0.234	2.721
11	600	0.295	3.430
12	1440	0.332	3.861

TIME	EXP 1	EXP 2	STDEV
5 min	0.033	0.038	0.0035
10	0.057	0.059	0.0014
15	0.062	0.068	0.0042
20	0.066	0.083	0.0120
30	0.074	0.108	0.0240
45	0.078	0.103	0.0176
60	0.096	0.134	0.0268
120	0.105	0.194	0.0629
180	0.164	0.212	0.0339
360	0.234	0.266	0.0226
600	0.295	0.292	0.0021
1440	0.332	0.3	0.0226

LPHE

SL NO	TIME	ABS.	CONC. (mg/ml)	TIN
1	5 min	0.066	0.767	5 m
2	10	0.094	1.093	10
3	15	0.11	1.279	1:
4	20	0.153	1.779	20
5	30	0.176	2.046	- 30
6	45	0.19	2.209	4
7	60	0.22	2.558	6
8	120	0.24	2.791	12
9	180	0.273	3.175	18
10	360	0.295	3.430	36
11	600	0.35	4.070	60
12	1440	0.385	4.477	144

TIME	EXP 1	EXP 2	STDEV
5 min	0.066	0.078	0.0084
10	0.094	0.95	0.6052
15	0.11	0.12	0.0070
20	0.153	0.14	0.0091
30	0.176	0.187	0.0077
45	0.19	0.2	0.0070
60	0.22	0.21	0.0070
120	0.24	0.238	0.0014
180	0.273	0.28	0.0049
360	0.295	0.3	0.0035
600	0.35	0.34	0.0070
1440	0.385	0.38	0.0035

LOSB

SL NO	TIME	ABS.	CONC. (mg/ml)	TIME	EXP 1	EXP 2	STDEV
1	5 min	0.078	0.907	5 min	0.078	0.069	0.0063
2	10	0.13	1.511	10	0.13	0.124	0.0042
3	15	0.147	1.709	15	0.147	0.156	0.0063
4	20	0.168	1.953	20	0.168	0.174	0.0042
5	30	0.228	2.651	30	0.228	0.236	0.0056
6	45	0.273	3.175	45	0.273	0.265	0.0056
7	60	0.28	3.256	60	0.28	0.282	0.0014
8	120	0.439	5.105	120	0.439	0.424	0.0106
9	180	0.527	6.129	180	0.527	0.464	0.0445
10	360	0.569	6.617	360	0.569	0.548	0.0148
11	600	0.604	7.024	600	0.604	0.551	0.0374
12	1440	0.618	7.187	1440	0.618	0.598	0.0141

LSMX

SL NO	TIME	ABS.	CONC. (mg/ml)	TIME	EXP 1	EXP 2	STDEV
1	5 min	0.063	0.732	5 min	0.063	0.055	0.0056
2	10	0.07	0.814	10	0.07	0.08	0.0070
3	15	0.084	0.976	15	0.084	0.09	0.0042
4	20	0.088	1.023	20	0.088	0.101	0.0091
5	30	0.101	1.174	30	0.101	0.12	0.0134
6	45	0.14	1.628	45	0.14	0.134	0.0042
7	60	0.19	2.209	60	0.19	0.184	0.0042
8	120	0.21	2.442	120	0.21	0.235	0.0176
9	180	0.257	2.988	180	0.257	0.249	0.0056
10	360	0.312	3.628	360	0.312	0.31	0.0014
11	600	0.367	4.268	600	0.367	0.34	0.0190
12	1440	0.373	4.338	1440	0.373	0.356	0.0120

LSTZ

SL NO	TIME	ABS.	CONC. (mg/ml)	TIME	EXP 1	EXP 2	STDEV
1	5 min	0.037	0.430	5 min	0.037	0.049	0.0084
2	10	0.055	0.639	10	0.055	0.061	0.0042
3	15	0.069	0.802	15	0.069	0.079	0.0070
4	20	0.08	0.930	20	0.08	0.082	0.0014
5	30	0.098	1.139	30	0.098	0.097	0.0007
6	45	0.133	1.546	45	0.133	0.14	0.0049
7	60	0.143	1.663	60	0.143	0.154	0.0077
8	120	0.218	2.535	120	0.218	0.22	0.0014
9	180	0.245	2.849	180	0.245	0.263	0.0127
10	360	0.3	3.489	360	0.3	0.31	0.0070
11	600	0.36	4.186	600	0.36	0.35	0.0070
12	1440	0.397	4.617	1440	0.397	0.41	0.0091

	%	STD DEV	
LZD	96.26	97.16	0.632
LHAD	93.46	92.81	0.462
LASA	88.83	90.02	0.844
LPHE	74.60	74.70	0.072
LOSB	93.46	93.75	0.207
LSMX	76.80	75.51	0.909
LSTZ	88.94	88.05	0.628

Table S4 The % availability of LZD in drug-drug eutectic mixture

Table S5 The % availability of coformer drug in drug-drug eutectic mixture

	% Availability of coformer		STD DEV	EXPECTED	EXPECTED
	drug in drug-drug eutectic			AS PER USP	AS PER IP
	mix	ture			
LHAD	90.12	91.51	0.982	> 80%	> 80%
				30 MIN	30 MIN
LASA	85.74	85.73	0.009	>80%	>70%
				30 MIN	45 MIN
LPHE	74.10	74.53	0.299	NA	NA
LOSB	94.16	95.09	0.654	NA	NA
LSMX	77.96	77.60	0.256	> 70%	NA
				60 MIN	
LSTZ	87.53	86.44	0.767	NA	NA