Electronic Supplementary Information

Crystal structures, dual-state emissions and polymer-based doped room-temperature phosphorescence of 8-benzyloxyisoquinoline derivatives

Miaochang Liu,^a Xinyue Xu,^b Yating Chen,^b Qiuping Ding,^{*a} Yunxiang Lei,^b Huayue Wu,^{*b} and Xiaobo Huang^{*b}

^a Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China

E-mail: dqpjxnu@gmail.com (Q. Ding)

^b College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China

E-mail: huayuewu@wzu.edu.cn (H. Wu), xiaobhuang@wzu.edu.cn (X. Huang)

Contents:

1. Experimental

1.1 Measurements and materials

NMR spectra were determined using a Bruker DRX 500 NMR spectrometer using CDCl₃ as a solvent and trimethylsilane as a reference. Melting points were determined on a WRS-1B digital melting point meter and were uncorrected. HRMS-ESI mass spectra were conducted on a Hitachi Nano Frontier LD spectrometer. UV-vis absorption spectra were performed with a UV-3600 Shimadzu spectrophotometer. Emission spectra were performed with a HITACHI F-7000 fluorometer. Absolute emission quantum yields and lifetime decays were performed using a Jobin Yvon Horiba FluoroMax-4 fluorometer. The X-ray powder diffraction (XRD) data were conducted on a Bruker X-ray diffractometer. The X-ray crystallographic analyses were conducted on a Bruker SMART II CCD area detector.

1.2 General procedure for 8-benzyloxyisoquinoline derivatives

A mixture of compound **3** (281.4 mg, 1.0 mmol), potassium carbonate (138.2 mg, 1.0 mmol), and 10 mL of acetonitrile was first stirred at 50 °C for 3 h. Various organic bromines (1.5 mmol) was then added to the mixture, which was further stirred at 80 °C for 10 h. After being cooled to room temperature, the reaction mixture was extracted with dichloromethane. The organic phase was dried with anhydrous sodium sulfate and the organic solvent was removed under reduced pressure. The residue was purified by a silica gel column chromatography using ethyl acetate/petroleum ether (1:8, v: v) as the eluent to afford pure 8-benzyloxyisoquinoline derivatives.

8-(Benzyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (IQ-H). White solid (316.9 mg), 85.3% yield, m. p. 141.2-141.8 °C. ¹H NMR (CDCl₃, 500 MHz): 7.52 (d, J = 7.0 Hz, 2H), 7.40-7.33 (m, 3H), 7.20 (s, 1H), 6.82 (s, 1H), 5.04 (s, 2H), 3.62 (br, 2H), 3.06 (br, 2H), 2.56 (s, 3H), 2.50 (s, 3H), 1.60-1.43 (m, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.0, 158.8, 152.8, 143.8, 140.4, 136.0, 128.9, 128.3, 122.5, 116.4, 111.1, 110.6, 104.8, 78.7, 52.4, 25.5, 24.6, 24.2, 20.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₄H₂₆N₃O, 372.2070; found, 372.2074.

3,6-Dimethyl-8-((4-methylbenzyl)oxy)-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (**IQ-Me**). White solid (337.3 mg), 87.5% yield, m. p. 123.8-123.9 °C. ¹H NMR (CDCl₃, 500 MHz): 7.39 (d, J = 7.0 Hz, 2H), 7.18-7.17 (m, 3H), 6.81 (s, 1H), 5.00 (s, 2H), 3.60 (br, 2H), 3.09 (br, 2H), 2.55 (s, 3H), 2.50 (s, 3H), 2.36 (s, 3H), 1.61-1.26 (m, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 161.1, 158.8, 152.8, 143.8, 140.4, 138.1, 133.0, 129.02, 128.99, 122.4, 116.5, 110.9, 110.6, 104.8, 78.6, 52.3, 25.6, 24.6, 24.2, 21.2, 20.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₅H₂₈N₃O, 386.2227; found, 386.2231.

Methyl 4-(((7-cyano-3,6-dimethyl-1-(piperidin-1-yl)isoquinolin-8-yl)oxy) methyl) benzoate (IQ-COOMe). White solid (348.8 mg), 81.2% yield, m. p. 146.8-147.5 °C. ¹H NMR (CDCl₃, 500 MHz): 8.06 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 7.0 Hz, 2H), 7.23 (s, 1H), 6.83 (s, 1H), 5.09 (s, 2H), 3.93 (s, 3H), 3.60 (br, 2H), 3.04 (br, 2H), 2.57 (s, 3H), 2.51 (s, 3H), 1.55 (br, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 166.8, 160.7, 158.8, 153.0, 143.8, 141.2, 140.4, 130.0, 129.7, 128.3, 122.7, 116.3, 111.2, 110.5, 104.7, 77.7, 52.4, 52.0, 25.6, 24.5, 24.2, 20.6 ppm. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₂₆H₂₇N₃O₃Na, 452.1945; found, 452.1943.

8-((4-Fluorobenzyl)oxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (IQ-F). White solid (297.9 mg), 76.5% yield, m. p. 159.6-159.7 °C. ¹H NMR (CDCl₃, 500 MHz): 7.49-7.46 (m, 2H), 7.21 (s, 1H), 7.07-7.04 (m, 2H), 6.82 (s, 1H), 5.00 (s, 2H), 3.63 (br, 2H), 3.05 (br, 2H), 2.55 (s, 3H), 2.50 (s, 3H), 1.59 (br, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 162.8 (d, J =246.3 Hz), 160.7, 158.8, 153.0, 143.8, 140.4, 131.9 (d, J = 3.8 Hz), 130.8 (d, J = 7.5 Hz), 122.6, 116.4, 115.2 (d, J = 21.3 Hz), 111.1, 110.6, 104.9, 77.8, 52.4, 25.6, 24.6, 24.2, 20.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₄H₂₅FN₃O, 390.1976; found, 390.1976.

8-((4-Chlorobenzyl)oxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (IQ-Cl). White solid (318.2 mg), 78.4% yield, m. p. 142.8-143.5 °C. ¹H NMR (CDCl₃, 500 MHz): 7.45 (d, J = 7.5 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.21 (s, 1H), 6.83 (s, 1H), 5.00 (s, 2H), 3.62 (br, 2H), 3.02 (br, 2H), 2.56 (s, 3H), 2.50 (s, 3H), 1.58 (br, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 160.7, 158.8, 152.9, 143.7, 140.4, 134.6, 134.2, 130.1, 128.5, 122.7, 116.4, 111.1, 110.5, 104.8, 77.6, 52.4, 25.6, 24.5, 24.2, 20.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₄H₂₅ClN₃O, 406.1681; found, 406.1683.

8-((4-Bromobenzyl)oxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (IQ-Br). White solid (340.0 mg), 75.5% yield, m. p. 163.0-163.6 °C. ¹H NMR (CDCl₃, 500 MHz): 7.51 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.21 (s, 1H), 6.83 (s, 1H), 4.99 (s, 2H), 3.60 (br, 2H), 3.01 (br, 2H), 2.56 (s, 3H), 2.50 (s, 3H), 1.58 (br, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 160.7, 158.8, 153.0, 143.8, 140.4, 135.1, 131.5, 130.4, 122.7, 122.4, 116.4, 111.1, 110.5, 104.8, 77.7, 52.4, 25.6, 24.6, 24.2, 20.6 ppm. HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{24}H_{25}BrN_3O$, 450.1176; found, 450.1170.

8-((4-Cyanobenzyl)oxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (IQ-CN). White solid (293.0 mg), 73.9% yield, m. p. 174.3-175.2 °C. ¹H NMR (CDCl₃, 500 MHz): 7.71-7.66 (m, 4H), 7.25 (s, 1H), 6.86 (s, 1H), 5.09 (s, 2H), 3.62 (br, 2H), 3.00 (br, 2H), 2.57 (s, 3H), 2.51 (s, 3H), 1.65-1.56 (m, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 160.4, 158.8, 153.2, 143.8, 141.5, 140.5, 132.3, 128.8, 123.0, 118.6, 116.3, 112.1, 111.4, 110.5, 104.7, 77.1, 52.5, 25.7, 24.5, 24.2, 20.6 ppm. HRMS (ESI) m/z: $[M+H]^+$ calculated for C₂₅H₂₄N₄O, 397.2023; found, 397.2014.

3,6-Dimethyl-8-((4-nitrobenzyl)oxy)-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (IQ-NO₂). Yellow solid (324.8 mg), 78.0% yield, m. p. 208.5-209.4 °C. ¹H NMR (CDCl₃, 500 MHz): 8.27 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 9.0 Hz, 2H), 7.26 (s, 1H), 6.87 (s, 1H), 5.15 (s, 2H), 3.62 (br, 2H), 3.01 (br, 2H), 2.58 (s, 3H), 2.51 (s, 3H), 1.55 (br, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 160.3, 158.8, 153.2, 147.8, 143.8, 143.5, 140.5, 128.8, 123.7, 123.1, 116.2, 111.4, 110.5, 104.7, 76.8, 52.5, 25.7, 24.5, 24.2, 20.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₄H₂₅N₄O₃, 417.1921; found, 417.1928.

8-((3,5-Dimethylbenzyl)oxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile (IQ-DMe). White solid (364.4 mg), 91.2% yield, m. p. 122.1-123.0 °C. ¹H NMR (CDCl₃, 500 MHz): 7.19 (s, 1H), 7.12 (s, 2H), 6.97 (s, 1H), 6.80 (s, 1H), 4.96 (s, 2H), 3.60 (br, 2H), 3.09 (br, 2H), 2.56 (s, 3H), 2.49 (s, 3H), 2.32 (s, 6H), 1.61-1.48 (m, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 161.2, 158.8, 152.8, 143.8, 140.4, 137.8, 135.8, 129.9, 126.9, 122.3, 116.5, 110.8, 110.6, 104.8, 78.9, 52.3, 25.5, 24.7, 24.2, 21.2, 20.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₆H₃₀N₃O, 400.2383; found, 400.2384.

8-((3,5-Bis(trifluoromethyl)benzyl)oxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7carbonitrile (IQ-BTF). White solid (348.6 mg), 68.7% yield, m. p. 104.9-105.7 °C. ¹H NMR (CDCl₃, 500 MHz): 8.00 (s, 2H), 7.88 (s, 1H), 7.26 (s, 1H), 6.86 (s, 1H), 5.15 (s, 2H), 3.60 (br, 2H), 3.00 (br, 2H), 2.58 (s, 3H), 2.52 (s, 3H), 1.58 (br, 6H) ppm.¹³C NMR (CDCl₃, 125 MHz): δ 160.0, 158.8, 153.2, 143.8, 140.5, 138.6, 132.1 (q, J = 33.8 Hz), 128.7 (d, J = 3.75 Hz), 125.4 (q, J= 270.0 Hz), 124.3, 123.2, 122.3-122.2 (m), 122.1, 116.2, 111.4, 110.5, 104.9, 76.6, 52.5, 25.7, 24.4, 24.2, 20.6. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₆H₂₄F₆N₃O, 508.1818; found, 508.1816.

1.3 Preparation of the doped materials

Dissolve the specific amount of isoquinoline derivative and PMMA in dichloromethane, respectively. The solutions were treated with ultrasound for 10 min in the ultrasonic instrument. The mixture was prepared by drop-wise addition of isoquinoline solution into PMMA solution, and then was treated with ultrasound for 10 min in the ultrasonic instrument for uniform

dissolution. Then the fully mixed two-component solution was slowly poured into the mold. Finally, thin and transparent film was obtained after drying the mixture at 50 $^{\circ}$ C for 2 h.

2. Figures and tables

Fig. S1 High performance liquid chromatography of 8-benzyloxyisoquinoline derivatives. Conditions: $CH_3CN/H_2O = 60\%:40\%$ for (a); $CH_3CN/H_2O = 80\%:20\%$ for (b); $CH_3OH/H_2O = 60\%:40\%$ for (c)-(j).

compound	λ_{abs}^{max}	$\lambda_{\rm em}{}^{ m max}$	λ_{abs}^{max}	$\lambda_{\rm em}{}^{\rm max}$	$arPhi_{ ext{Fluo.}}$
	THF, nm	THF, nm	Solid, nm	Solid, nm	Solid, %
IQ-H	352	441	417	455	58.3
IQ-Me	353	446	401	443	62.1
IQ-COOMe	351	407	373	455	9.6
IQ-F	353	445	411	449	57.5
IQ-Cl	353	436	400	456	34.2
IQ-Br	354	437	422	466	35.3
IQ-CN	351	407	397	465	7.6
IQ-NO ₂	349	406	403	495	0.9
IQ-DMe	353	436	432	461	48.1
IQ-BTF	351	406	402	458	13.6

Table S1 Fluorescence properties of 8-benzyloxyisoquinoline derivatives

Table S2 Crystal data and details of collection and refinement for IQ-H, IQ-Me, IQ-COOMe, IQ-F, and IQ-CI

	IQ-H	IQ-Me	IQ-COOMe	IQ-F	IQ-Cl
CCDC (no.)	2245980	2245981	2245985	2245982	2245983
Empirical formula	$C_{24}H_{25}N_{3}O$	$C_{25}H_{27}N_{3}O$	$C_{26}H_{27}N_3O_3$	$\mathrm{C}_{24}\mathrm{H}_{24}\mathrm{FN}_{3}\mathrm{O}$	C24H24ClN3O
Formula weight	371.47	385.49	429.50	389.46	405.91
Temperature (K)	293(2)	293(2)	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Orthorhombic	Triclinic	Orthorhombic	Monoclinic
Space group	<i>P</i> 2 ₁	P ccn	$P\overline{1}$	P bca	<i>P</i> 2 ₁
Ζ	2	8	4	8	4
D _{calcd} [Mg/m ³]	1.197	1.071	1.251	1.270	1.240
F (000)	396	1648	912	1648	856
θ range [°]	2.480-25.997	2.538-25.496	1.854-26.000	2.553-24.993	2.411-25.499
R_1 [I>2 σ (I)]	0.0346	0.0641	0.0479	0.0749	0.0486
wR_2 [I>2 σ (I)]	0.0796	0.1607	0.1174	0.1566	0.1063
<i>a</i> [Å]	6.8819(4)	15.3952(10)	11.0228(14)	19.673(7)	10.7226(8)
<i>b</i> [Å]	18.2382(10)	31.5081(17)	11.0661(13)	7.589(2)	13.7126(11)
<i>c</i> [Å]	8.3735(5)	9.8531(6)	19.024(3)	27.281(7)	14.8083(13)
α [deg]	90	90	80.438(4)	90	90
β [deg]	101.220(2)	90	87.096(4)	90	93.229(3)
γ [deg]	90	90	85.625(4)	90	90
V[Å ³]	1030.90(10)	4779.5(5)	2279.9(5)	4073(2)	2173.9(3)
GOF	1.048	1.030	1.050	1.034	1.033
R(int)	0.0272	0.0535	0.0369	0.1441	0.0273
No. of reflens collected	10712	21207	33903	16722	17855
No. of unique reflens	3649	4433	8916	3565	7991
R_1 (all data)	0.0401	0.1147	0.0693	0.1827	0.0829

	IQ-Br	IQ-CN	IQ-NO ₂	IQ-DMe	IQ-BTF
CCDC (no.)	2245984	2245986	2245987	2245988	2245989
Empirical formula	$\mathrm{C}_{24}\mathrm{H}_{24}\mathrm{BrN}_{3}\mathrm{O}$	$\mathrm{C}_{25}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{O}$	$C_{24}H_{24}N_4O_3$	$C_{26}H_{29}N_{3}O$	$C_{26}H_{23}F_6N_3O$
Formula weight	450.37	396.48	416.47	399.52	507.47
Temperature (K)	293(2)	296(2)	296(2)	293(2)	296(2)
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	<i>C</i> 2/c	Pī	<i>P</i> 2 ₁	Pī	$P\overline{1}$
Ζ	8	2	4	2	4
$D_{ m calcd} [m Mg/m^3]$	1.391	1.250	1.276	1.176	1.344
F (000)	1856	420	880	428	1048
θ range [°]	2.336-25.500	2.897-25.499	2.349-25.500	1.881-25.498	2.449-25.500
$R_1[I \ge 2\sigma(I)]$	0.0503	0.0577	0.0487	0.0566	0.0499
$wR_2 [I \ge 2\sigma(I)]$	0.1295	0.1540	0.1011	0.1564	0.1192
<i>a</i> [Å]	21.3712(7)	7.8031(3)	10.7300(9)	10.8627(3)	9.4961(3)
<i>b</i> [Å]	10.6818(3)	10.8097(4)	13.6341(10)	10.9176(3)	16.3124(5)
<i>c</i> [Å]	19.0014(6)	13.6803(5)	14.8150(14)	10.9887(4)	17.0312(6)
α [deg]	90	104.0820(10)	90	80.5480(10)	75.8520(10)
β [deg]	97.4240(10)	92.9470(10)	90.254(3)	87.9690(10)	84.4340(10)
γ [deg]	90	108.1090(10)	90	61.5120(10)	78.9830(10)
V [Å ³]	4301.3(2)	1053.66(7)	2167.3(3)	1128.47(6)	2507.53(14)
GOF	1.042	1.061	1.071	1.048	1.032
R(int)	0.0365	0.0710	0.0199	0.0246	0.0513
No. of reflens collected	20532	14730	10438	11024	36842
No. of unique reflens	3993	3919	7518	4161	9300
R_1 (all data)	0.0826	0.0743	0.0792	0.0733	0.0811
wR_2 (all data)	0.1504	0.1689	0.1224	0.1747	0.1418

Table S3 Crystal data and details of collection and refinement for IQ-Br, IQ-CN, IQ-NO₂, IQ-DMe, and IQ-BTF

Fig. S2 Comparison of experimental XRD curves and the simulated XRD curves obtained from the corresponding single crystals: (a) IQ-H; (b) IQ-Me; (c) IQ-COOMe; (d) IQ-F; (e) IQ-Cl; (f) IQ-Br; (g) IQ-CN; (h) IQ-NO₂; (i) IQ-DMe; (j) IQ-BTF.

Fig. S3 Stacking arrangement (a) and intermolecular interactions (b) in crystal IQ-COOMe.

Fig. S4 Stacking arrangement (a) and intermolecular interactions (b) in crystal IQ-F.

Fig. S5 Stacking arrangement (a) and intermolecular interactions (b) in crystal IQ-Cl.

Fig. S6 Stacking arrangement (a) and intermolecular interactions (b) in crystal IQ-Br.

Fig. S7 Stacking arrangement (a) and intermolecular interactions (b) in crystal IQ-NO₂.

Fig. S8 Stacking arrangement (a) and intermolecular interactions (b) in crystal IQ-DMe.

Fig. S9 Stacking arrangement (a) and intermolecular interactions (b) in crystal IQ-BTF.

Fig. S10 (a) Delayed emission spectra of 8-benzyloxyisoquinoline derivatives in THF solvent (1 × 10^{-5} mol/L) at 77 K (λ_{ex} : 400 nm). (b) Delayed emission spectra of 8-benzyloxyisoquinoline derivatives in solid state at room temperature. Delay time: 0.5 ms.

Fig. S11 Delayed spectrum of the PMMA polymer in solid state at room temperature (Delay time: 0.5 ms).

Fig. S12 Delayed emission lifetimes of the polymer-based doped materials.

Fig. S13 Prompt and delayed spectra of the other two-component doped materials ($\lambda_{ex} = 340$ nm for prompt spectra and $\lambda_{ex} = 400$ nm for delayed spectra). Delay time: 0.5 ms.

Fig. S14 Temperature-dependent delayed emissions of PMMA/IQ-DMe ($\lambda_{ex} = 400$ nm). Delay time: 0.5 ms.

Fig. S15 Comparison of phosphorescence spectra between 8-benzyloxyisoquinoline derivatives at 77 K in THF solution (1×10⁻⁵ mol/L) and the corresponding two-component doped materials (λ_{ex} = 400 nm). Delay time: 0.5 ms.

Fig. S29 ¹³C NMR of IQ-CN (CDCl₃, 125 MHz).

