Supporting Information

Preparation and properties of novel (Tb_{1-x}Ce_x)Sc₂Al₃O₁₂ magneto-optical ceramics with different doping concentrations

Fang Wang^{a,b}, Yiheng Wu^{b,d}, Xieming Xu^{b,d}, Rui Zhang^{a,b}, Qi Luo^{a,b}, Hao Lu^{b,d}, Shuaihua Wang^{*b,c}, Shaofan Wu^{*b,c}

^aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou,

Fujian 350117, China.

^bKey Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

^cFujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.

^dUniversity of Chinese Academy of Sciences, Beijing 100039, China.

* E-mail: shwang@fjirsm.ac.cn. sfwu@fjirsm.ac.cn

Figure S1. Rietveld refinement of $(Tb_{1-x}Ce_x)_3Sc_2Al_3O_{12}$ ceramics. (a) $Ce_{0.001}TSAG$. (b) $Ce_{0.0025}TSAG$. (c) $Ce_{0.005}TSAG$. (d) $Ce_{0.01}TSAG$. (e) $Ce_{0.0015}TSAG$. (f) $Ce_{0.02}TSAG$.

Figure S2. Transmission polarized optical microscopic images of the $Ce_{0.001}TSAG$ ceramic (The image below shows the optical micrograph of the sample after 45° rotation relative to the image

Figure S3. Transmission polarized optical microscopic images of the $Ce_{0.0025}TSAG$ ceramic (The image below shows the optical micrograph of the sample after 45° rotation relative to the image above).

Transmission mode Orthogonal polarization

Transmission mode Orthogonal polarization

Figure S4. Transmission polarized optical microscopic images of the $Ce_{0.005}TSAG$ ceramic (The image below shows the optical micrograph of the sample after 45° rotation relative to the image above).

Figure S5. Transmission polarized optical microscopic images of the $Ce_{0.01}TSAG$ ceramic (The image below shows the optical micrograph of the sample after 45° rotation relative to the image above).

Figure S6. Transmission polarized optical microscopic images of the $Ce_{0.015}TSAG$ ceramic (The image below shows the optical micrograph of the sample after 45° rotation relative to the image above).

Transmission	mode	Orthogonal p	olarization
2.0 at.% Ce	0°	2.0 at.% Ce	0°
	2 <u>00 μ</u> m		2 <u>00 μ</u> m
2.0 at.% Ce	45°	2.0 at.% Ce	45°
	2 <u>00 μ</u> m		2 <u>00 μ</u> m

Figure S7. Transmission polarized optical microscopic images of the $Ce_{0.02}TSAG$ ceramic (The image below shows the optical micrograph of the sample after 45° rotation relative to the image above).

Transmission mode Orthogonal polarization

Figure S8. SEM image and EDS mapping results of the Ce_{0.001}TSAG ceramic.

Figure S9. SEM image and EDS mapping results of the Ce_{0.0025}TSAG ceramic.

Figure S10. SEM image and EDS mapping results of the Ce_{0.005}TSAG ceramic.

Figure S11. SEM image and EDS mapping results of the $Ce_{0.01}TSAG$ ceramic.

Figure S12. SEM image and EDS mapping results of the Ce_{0.015}TSAG ceramic.

Figure S13. SEM image and EDS mapping results of the Ce_{0.02}TSAG ceramic.

Figure S14. Particle size distribution diagram of (a) Ce_{0.001}TSAG ceramic, (b) Ce_{0.0025}TSAG ceramic, (c) Ce_{0.005}TSAG ceramic, (d) Ce_{0.01}TSAG ceramic, (e) Ce_{0.015}TSAG ceramic, (f) Ce_{0.02}TSAG ceramic. (The units of particle size are μm)

Figure S15. (a) Photograph of the $Ce_{0.0025}TSAG$ ceramic ($\phi 10 \text{ mm} \times 16 \text{ mm}$). (b) The optical transmittance spectra of the $Ce_{0.0025}TSAG$ ceramic. (c) The wave-front intensity map and oblique plot of the $Ce_{0.0025}TSAG$ ceramic. (d) The optical weak absorption diagram of the $Ce_{0.0025}TSAG$ ceramic.

Figure S16. Faraday rotation of (a) $Ce_{0.001}TSAG$ ceramic, (b) $Ce_{0.0025}TSAG$ ceramic, (c) $Ce_{0.005}TSAG$ ceramic, (d) $Ce_{0.01}TSAG$ ceramic, (e) $Ce_{0.015}TSAG$ ceramic in different wavelengths at room temperature.

Figure S17. Faraday rotation of Ce_{0.01}TSAG in different wavelengths at (a) 293 K, (b) 323 K, (c) 373 K, (d) 423 K, (e) 473 K, (f) 523 K, (g) 573 K, (h) 623 K, (i) 673 K.

Figure S18. EDS elemental spectrum of (Tb_{1-x}Ce_x)₃Sc₂Al₃O₁₂ ceramics (x=0.001, 0.0025, 0.005, 0.01, 0.015, 0.02).

Motoriala	The reliability parameters			
Materials	Rp	Gof		
Ce _{0.001} TSAG	8.88%	1.65		
Ce _{0.0025} TSAG	8.67%	1.49		
Ce _{0.005} TSAG	7.11%	1.36		
Ce _{0.01} TSAG	9.56%	1.45		
Ce _{0.015} TSAG	9.46%	1.60		
Ce _{0.02} TSAG	7.94%	1.42		

Table S1.The reliability parameters obtained by XRD Rietveld refinement.

Table S2.

Verdet constants of TGG crystal, TSAG ceramic and $(Tb_{1-x}Ce_x)Sc_2Al_3O_{12}$ (x=0.001, 0.0025, 0.005, 0.01, 0.015, 0.02) ceramics at different wavelengths.

Motoriala -	Verdet constant (rad·m ⁻¹ ·T ⁻¹) at different wavelengths					
	405 nm	532 nm	635nm	808 nm	1064 nm	
TGG crystal	-470.2	-190.2	-130.1	-	-40.0	
TSAG ceramic	-579.1	-226.1	-150.6	-92.0	-47.8	
Ce _{0.001} TSAG	-588.4	-234.5	-159.5	-94.5	-51.5	
Ce _{0.0025} TSAG	-582.6	-231.4	-157.9	-93.2	-49.9	
Ce _{0.005} TSAG	-586.4	-236.9	-162.9	-94.1	-51.2	
Ce _{0.01} TSAG	-594.2	-241.6	-165.1	-96.3	-55.0	
Ce _{0.015} TSAG	-585.6	-233.8	-161.9	-95.0	-50.9	
Ce _{0.02} TSAG	-582.9	-230.1	-153.9	-92.5	-48.1	

Table S3.

	Fitted equation: $l/V = l/E(\lambda^2 - \lambda_0^2)$			
Materials	Proportionality factor E (10 ³	Transition wavelength λ_{θ} (nm)		
	$rad \cdot nm^2 \cdot T^{-1} \cdot m^{-1}$)			
Ce _{0.001} TSAG	55286.2	245.5		
Ce _{0.0025} TSAG	53442.2	256.4		
Ce _{0.005} TSAG	54776.0	254.2		
Ce _{0.01} TSAG	59234.3	218.8		
Ce _{0.015} TSAG	54584.0	254.8		
Ce _{0.02} TSAG	51398.3	270.2		

Proportionality factor *E* and transition wavelength λ_0 of $(Tb_{1-x}Ce_x)Sc_2Al_3O_{12}$ (x=0.001, 0.0025, 0.005, 0.01, 0.015, 0.02) ceramics at room temperature.

Table S4.

Tommonoturo	Verdet constant (rad·m ⁻¹ ·T ⁻¹) at different wavelengths				
remperature	405 nm	532 nm	635nm	808 nm	1064 nm
293 K	-594.2	-241.6	-165.1	-96.3	-55
323 K	-544.4	-226.4	-152.3	-87.0	-51.5
373 K	-483.8	-199.2	-129.0	-75.0	-41.0
423 K	-429.0	-162.1	-112.1	-62.5	-38.5
473 K	-369.1	-141.6	-98.0	-57.3	-32.5
523 K	-318.5	-130.7	-88.3	-52.4	-27.6
573 K	-280.2	-109.4	-79.0	-38.4	-25.4
623 K	-244.6	-100.8	-72.1	-42.6	-24.3
673 K	-206.6	-91.5	-63.0	-37.3	-22.8

The temperature-dependent of Verdet constants for the $Ce_{0.01}TSAG$ ceramic at different wavelengths.

Table S5.

	Fitted equation: $1/V = 1/E(\lambda^2 - \lambda_0^2)$			
Ce _{0.001} TSAG	Proportionality factor E (10 ³	Transition wavelength λ_0 (nm)		
	rad • nm ² • T ⁻¹ • m ⁻¹)			
293 K	59234.3	218.8		
323 K	50444.2	258.0		
373 K	44753.1	243.1		
423 K	39308.5	234.6		
473 K	34687.8	230.4		
523 K	30287.0	241.8		
573 K	27280.7	234.7		
623 K	25305.7	215.8		
673 K	23055.7	216.3		

Proportionality factor *E* and transition wavelength λ_0 of the Ce_{0.001}TSAG ceramic at different temperatures.

Table S6

Verdet constants of TSAG ceramics, $(Tb_{1-x}Ce_x)Sc_2Al_3O_{12}$ (x=0.001, 0.0025, 0.005, 0.01, 0.015, 0.02) ceramics, TSAG crystals, and TGG crystals at different wavelengths.

Matariala	Verdet constant (rad·m ⁻¹ ·T ⁻¹) at different wavelengths				
Materials	405 nm	532 nm	635nm	808 nm	1064 nm
TSAG ceramic	-579.1	-226.1	-150.6	-92.0	-47.8
Ce _{0.001} TSAG	-588.4	-234.5	-159.5	-94.5	-51.5
Ce _{0.0025} TSAG	-582.6	-231.4	-157.9	-93.2	-49.9
Ce _{0.005} TSAG	-586.4	-236.9	-162.9	-94.1	-51.2
Ce _{0.01} TSAG	-594.2	-241.6	-165.1	-96.3	-55.0
Ce _{0.015} TSAG	-585.6	-233.8	-161.9	-95.0	-50.9
Ce _{0.02} TSAG	-582.9	-230.1	-153.9	-92.5	-48.1
TSAG crystal ¹	-	-218.0	-152@633 nm	-	-65.0
TGG crystal	-470.2	-190.2	-130.1	-	-40.0

References

[1] R. Q. Dou, H. T. Zhang, Q. L. Zhang, N. F. Zhuang, W. P. Liu, Y. He, Y. Y. Chen, M. J. Cheng, J. Q. Luo and D. L. Sun, Growth and properties of TSAG and TSLAG magneto-optical crystals with large size, *Opt. Mater.*, 2019, **96**, 109272.