Supporting Information

Rivaroxaban Eutectics with Improved Solubility, Dissolution Rate, Bioavailability and Stability

Parth S. Shaligram,^{*a,b*} Christy P. George,^{*a,c*} Himanshu Sharma,^{*a,c*} Kakasaheb R. Mahadik,^{*b*} Sharvil Patil,^{*b*} Kumar Vanka,^{*a,c*} S. Arulmozhi,^{*b**} and Rajesh G. Gonnade^{*a,c**}

^aPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, India.

^bBharati Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune-411 038, Maharashtra, India.

^cAcademy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.

E-mail: rg.gonnade@ncl.res.in

Contents

Figure S1. Binary Phase diagrams of eutectics
Figure S2. DSC thermograms of eutectics
Figure S3. PXRD profiles of eutectics
Figure S4. The FTIR spectra of eutectics
Figure S5. DSC profiles of eutectics recorded after accelerated and long-term stability study conditions
Figure S6. PXRD measured for eutectics after long term stability studies
Figure S7. The optimized structures of different eutectic system (heterosynthons) at B3LYP/TZVP level of theory
Figure S8. The optimised structures of acids and RXB dimers (homosynthons) at B3LYP/TZVP level of theory
Figure S9. The NCI plot for different acids and RXB dimer
Figure S10. The NCI plot for different eutectic systems
Figure S11. The crystal structure of RXB showing dimeric associations similar to predicted structure obtained using DFT studies
Table S2. Observed vibrational frequencies for eutectics 27
Table S3. Saturation solubility study of eutectics
Saturation solubility
Saturation solubility
Table S4. Dissolution rate data of RXB and Physical Mixtures (mol:mol) 29
Table S5. Dissolution rate data of eutectics
Table S6. Theoretical Log P values of RXB and coformers. 31
Table S7. The interaction energies (ΔE_{int} and ΔG_{int})

Figure S1. Binary Phase diagrams of eutectics, (a) RXB-CA, (b) RXB-FA, (c) RXB-SA, (d) RXB-MA and (e) RXB-TA.

Figure S2. DSC thermograms of eutectics, (a) RXB, CA, RXB-CA (1:2), (b) RXB, FA, RXB-FA (1:2), (c) RXB, SA, RXB-SA (1:2), (d) RXB, MA, RXB-MA (1:4) and (e) RXB, TA, RXB-TA (1:1).

Figure S3. PXRD profiles of eutectics, (a) RXB, CA, RXB-CA (1:2), (b) RXB, FA, RXB-FA (1:2), (c) RXB, SA, RXB-SA (1:2), (d) RXB, MA, RXB-MA (1:4) and (e) RXB, TA, RXB-TA (1:1).

Figure S4. The FTIR spectra of eutectics, (a) RXB, CA, RXB-CA (1:2), (b) RXB, FA, RXB-FA (1:2), (c) RXB, SA, RXB-SA (1:2), (d) RXB, MA, RXB-MA (1:4) and (e) RXB, TA, RXB-TA (1:1).

Figure S5. DSC profiles of eutectics recorded after accelerated and long-term stability study conditions, (a) RXB- CAA (1:2), (b) RXB- CA (1:2), (c) RXB- FA (1:2), (d) RXB-SA (1:2), (e) RXB- MA (1:4) and (f) RXB- TA (1:1).

Figure S6. PXRD measured for eutectics after long term stability studies, (a) RXB- CAA (1:2), (b) RXB- CA (1:2), (c) RXB- FA (1:2), (d) RXB- SA (1:2), (e) RXB- MA (1:4) and (f) RXB- TA (1:1) suggesting no new crystal phase was formed.

Figure S7. The optimized structures of different eutectic system (heterosynthons) at B3LYP/TZVP level of theory.

Figure S8. The optimised structures of acids and RXB dimers (homosynthons) at B3LYP/TZVP level of theory.

Figure S9. The NCI plot for different acids and RXB dimer.

Figure S10. The NCI plot for different eutectic systems.

Figure S11. The crystal structure of RXB showing dimeric associations similar to predicted structure obtained using DFT studies.

Sr. No.	Sample (RXB + Coformer)	Reduced melting temperature (X/χ)
		(,)
1	RXB + Adipic Acid	×
2	RXB + Ascorbic Acid	×
3	RXB + Benzoic Acid	×
4	RXB + Caffeic Acid (RXB-CAA)	\checkmark
5	RXB + Cinnamic Acid	×
6	RXB + Citric Acid	×
7	RXB + Coumaric Acid (RXB-CA)	\checkmark
8	RXB + Fumaric Acid (RXB-FA)	\checkmark
9	RXB + Glutamic Acid	×
10	RXB + Malic Acid	×
11	RXB + Mandelic Acid (RXB-MA)	\checkmark
12	RXB + Oxalic Acid	×
13	RXB + Salicylic acid	×
14	RXB + Stearic Acid	×
15	RXB + Succinic Acid (RXB-SA)	\checkmark
16	RXB + Trimesic Acid (RXB-TA)	\checkmark
17	RXB + Vanillic Acid	×

Table S1. Samples showing reduction in melting temperature after physical examination.

Table S2. Observed vibrational frequencies for eutectics, RXB, CA, RXB-CA (1:2), FA,RXB-FA (1:2), SA, RXB-SA (1:2), MA, RXB-MA (1:4), TA and RXB-TA (1:1).

RXB	CA	RXB-	FA	RXB-	SA	RXB-	MA	RXB-	ТА	RXB-
(cm- 1)	(cm- 1)	CA (1:2)	(cm- 1)	FA (1:2)	(cm- 1)	SA (1:2)	(cm-1)	MA (1:4)	(cm- 1)	TA (1:1)
		(cm-1)		(cm-1)		(cm-1)		(cm-1)		(cm-
										1)
3366	3400	3364	1272	3366.5	1302	3368	1431	367	1465	3361
1737	1694	1725	1626	1738	1093	1737.5	1717	1717	1715	1735
832	1449	831	702	830	603	838	–OH peak was merged	835		835
		1433		1623		1311		1432		1468
		1705		1280		1102		1717.5		1713
		-OH peak was merged into - C=O peak		703		604				

Table S3. Saturation solubility study of eutectics, RXB, RXB-CAA (1:2), RXB-CA (1:2), RXB-FAA (1:2), RXB-SA (1:2), RXB-MA (1:4) and RXB-TA (1:1) and physical mixtures in distilled water.

Sr.	RXB and mixtures	Saturation solubility for	Saturation solubility for
No.	(mol:mol)	eutectics (μ g/mL) ± S.D.	physical mixtures
			$(\mu g/mL) \pm S.D.$
1	Rivaroxaban (RXB)	5.49 ± 0.13	5.49 ± 0.13
2	RXB-CAA (1:2)	7.32 ± 0.22	5.51 ± 0.26
3	RXB-CA (1:2)	6.91 ± 0.19	5.47 ± 0.17
4	RXB-FA (1:2)	6.31 ± 0.22	5.45 ± 0.1
5	RXB-SA (1:2)	5.54 ± 0.33	5.44 ± 0.18
6	RXB-MA (1:4)	5.51 ± 0.27	5.45 ± 0.21
7	RXB-TA (1:1)	5.62 ± 0.28	5.42 ± 0.16

Table S4. Dissolution rate data of RXB and Physical Mixtures (mol:mol), RXB- CAA, RXB-CA, RXB-FA, RXB-SA, RXB-MA and RXB-TA.

Sample Name	% Cumulative Release (at 60 min)
RXB	16.47%
RXB- CAA (1:2)	17%
RXB- CA (1:2)	16.33%
RXB- FA (1:2)	16.90%
RXB- SA (1:2)	16.52%
RXB- MA (1:4)	16.17%
RXB- TA (1:1)	16.64%

Time	RXB (%CR)	RXB- CAA (%CR)	RXB- CA (%CR)	RXB- FA (%CR)
0	0±0	0±0	0±0	0±0
5	0±0	3.17±0.6	1.30±0.51	4.31±0.67
10	0.73±0.5	6.06±1.36	4.86±1.65	9.35±1.75
15	2.30±0.75	8.92±1.76	7.78±0.41	12.13±0.53
20	4.21±1.3	12.44±2.14	11.06±0.97	15.38±1.23
30	8.16±1.78	15.85±1.12	16.13±2.193	19.81±2.33
45	12.04±2.11	21.73±2.34	22.66±2.31	24.50±3.33
60	16.47±3.11	26.37±3.02	27.44±4.02	28.36±2.02

Table S5. Dissolution rate data of eutectics, RXB, RXB- CAA, RXB- CA and RXB-FA.

Sr. No.	RXB and Eutectics	logP of RXB and coformer
1	Rivaroxaban (RXB)	1.5ª
2	CAA	1.80 ^b
3	CA	1.71 ^b
4	FA	-0.288 ^b
5	SA	-0.064 ^b
6	MA	0.805 ^b
7	ТА	0.78 ^b

Table S6. Theoretical Log P values of RXB and coformers.

References

- a W. Mueck, J. Stampfuss, D. Kubitza and M. Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. *Clin. Pharmacokinet*. 2014, **53**, 1-16. doi: 10.1007/s40262-013-0100-7
- b Theoretical log P values using Crippen method

Table S7. The interaction energies (ΔE_{int} and ΔG_{int}) calculated using B3LYP-D3/def-TZVP level of theory.

