Electronic Supplementary Information

Long-lived fluorinated boron-nitride dots exhibiting room-temperature phosphorescence and high-temperature resistance

Xu Zhang, ^a Shenghui Han, ^a Gang Lian, ^{*a} Deliang Cui ^a and Qilong Wang ^b

a. State Key Lab of Crystal Materials, Shandong University, Jinan 250100, P.R. China.

 b. Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P.R. China. email: liangang@sdu.edu.cn

Fig. S1 Synthetic procedures of F-BNDs(e), F-BNDs(t) and F-BNDs(p).

Fig. S2 The phosphorescence emission spectra excited at different wavelengths of (a) F-BNDs(e), (b) F-BNDs(p) and (c) F-BNDs(t).

Fig. S3 Synthetic procedures of BNDs(e), BNDs(t) and BNDs(p).

Fig. S4 (a) The phosphorescence emission spectra of F-BNDs(e) and BNDs(e) under 360 nm excitation. (b)Time-resolved phosphorescence decay curves of F-BNDs(e) and BNDs(e) under 360 nm excitation.

Fig. S5 FL and phosphorescence spectra excited at 360 nm of (a) F-BNDs(e), (b) F-BNDs(p) and (c) F-BNDs(t).

Fig. S6 Time-resolved phosphorescence decay curves of BNDs(e) obtained at 300, 330 and 350 °C.

Fig. S7 TEM images of (a) F-BNDs(p) and (b) F-BNDs(t).

Fig. S8 XRD patterns of (a) F-BNDs(e), (b) F-BNDs(p) and (c) F-BNDs(t).

Fig. S9 FTIR spectra of (a) F-BNDs(e), (b) F-BNDs(p) and (c) F-BNDs(t).

Fig. S10 (a) The survey XPS spectra of F-BNDs(p) and BNDs(p). (b) The survey XPS spectra of F-BNDs(t) and BNDs(t).

Fig. S11 (a) The photographs of F-BNDs(e) with different fluorine contents taken after the stoppage of 405 nm excitation. (b) The RTP spectra under 360 nm excitation and (c) time-resolved phosphorescence decay curves of F-BNDs(e) with different fluorine contents

Fig. S12 High-resolution N1s spectra of (a) F-BNDs(e), (b) F-BNDs(p) and (c) F-BNDs(t).

High-resolution spectrum of N 1s bands demonstrates three peaks in 399.2, 400.6 and 401.6 eV, which are attributed to N-B, N-C/N-O and N-H bonds,^{1, 2} respectively. The N-H bond implies the presence of $-NH_2$ groups.

Fig. S13 High-resolution O1s spectra of (a) F-BNDs(e), (b) F-BNDs(p) and (c) F-BNDs(t).

The high-resolution O1s spectra exhibit two peaks, including O-B at 531.7 and O-H at 532.1 eV.³

Fig. S14 High-resolution B1s spectra of (a) F-BNDs(p) and (b) F-BNDs(t).

Fig. S15 High-resolution F1s spectra of (a) F-BNDs(p) and (b) F-BNDs(t).

The high-resolution spectrum of F1s shows two peaks at 684.9 and 685.6 eV for F-C and F-B bonds,^{4, 5} respectively.

Fig. S16 FL emission spectra excited at different wavelengths of (a) F-BNDs(e), (b) F-BNDs(p) and (c) F-BNDs(t).

Fig. S17 (a) Time-resolved FL decay curves of F-BNDs(e) and BNDs(e) under 380 nm excitation. (b) Time-resolved FL decay curves of F-BNDs(p) and BNDs(p) under 380 nm excitation. (c) Time-resolved FL decay curves of F-BNDs(t) and BNDs(t) under 340 nm excitation.

The FL decay spectra of three F-BNDs are fitted to give FL lifetimes of 8.52, 7.05, and 4.24 ns for F-BNDs(e), F-BNDs(p) and F-BNDs(t), respectively. It is worth noting that the FL lifetimes of BNDs(e), BNDs(t) and BNDs(p) are 7.50, 4.88 and 2.62 ns, which are shorter than corresponding F-BNDs, respectively. These results should be attributed to the effect of hydrogen-bond network, suppressing the non-radiative transitions. Higher $-NH_2$ and -OH ratios are conducive to the formation of stronger inter- and intra-dot hydrogen-bond networks, exhibiting the longer FL and RTP lifetime.

Fig. S18 The XRD pattern of the F-BNDs(e) after treatment at 700 °C for 0.5 h in air condition.

The F-BNDs(e) were treated at 700 °C for 0.5 h in air condition. After that, most of the sample was maintained and the phase composition is consistent with that before heating, exhibiting excellent thermal stability.

Fig. S19 The photographs of (a) F-BNDs(p) and (b) F-BNDs(t) taken after the stoppage of 405 nm excitation by varying temperatures from 25 to 150 °C and photographs of corresponding BNDs taken at 150 °C.

Fig. S20 Schematic illustration of the RTP emission mechanisms of the F-BNDs.

 Tab. S1 Fitted parameters of the RTP decay curves of the F-BNDs and BNDs.

Sample	$\tau_1(s)$	α ₁ (%)	$ au_2(s)$	α ₂ (%)	$\tau_{avg}\!\left(s\right)$	Ø
F-BNDs(e)	0.393	15.48	1.222	84.52	1.175	1.210
F-BNDs(p)	0.211	23.69	1.131	73.61	1.074	1.176
F-BNDs(t)	0.055	42.51	0.415	57.49	0.383	1.557
BNDs(e)	0.051	1.67	0.896	98.33	0.895	1.134
BNDs(p)	0.148	29.25	0.553	70.75	0.513	1.169
BNDs(t)	0.021	63.50	0.129	36.50	0.106	1.325

Samples	Room-temperature Lifetime (ms)	High-temperature Lifetime (ms)	Ref.
B-CDs@PAM	637	_	6
M-CDs	243	_	7
FNCDs	1140	—	5
NCDs	1060		8
CDs/PVP	476	—	9
CNDs	193	—	10
MP-CDs	880	—	11
FP-CDs	175	—	12
CD@PVA	292	—	13
CNDs	1387	_	14
FCNDs	1210	_	15
F-BNDs(e)	1175	250 (150 °C)	This work

Tab. S2 Phosphorescence lifetime comparison of some reported CD-based materials and F-BNDs.

Samples	-NH ₂ (%)	-OH (%)
F-BNDs(e)	36.71	56.35
F-BNDs(p)	27.29	44.18
F-BNDs(t)	15.94	43.52

Tab. S3 The -NH₂ and -OH groups ratios of F-BNDs(e), F-BNDs(p) and F-BNDs(t) in N1s and O1s spectra.

Supplementary video S1

The video S1 demonstrates that the F-BNDs(e) powder could emit green room temperature phosphorescence after the stoppage of 405 nm excitation, lasting over 10 s by the naked eyes.

References

- 1. M. Liu, Y. Xu, Y. Wang, X. Chen, X. Ji, F. Niu, Z. Song and J. Liu, Adv. Opt. Mater., 2017, 5, 1600661.
- 2. S. Angizi, F. Shayeganfar, M. H. Azar and A. Simchi, Ceram. Int., 2020, 46, 978-985.
- 3. S. Han, G. Lian, X. Zeng, Z. Cao, Q. Wang, D. Cui and C.-P. Wong, *Nano Res.*, 2020, 13, 3261-3267.
- A. Meiyazhagan, P. Serles, D. Salpekar, E. F. Oliveira, L. B. Alemany, R. Fu, G. Gao, T. Arif, R. Vajtai, V. Swaminathan,
 D. S. Galvao, V. N. Khabashesku, T. Filleter and P. M. Ajayan, *Adv. Mater.*, 2021, 33, e2106084.
- 5. F. Liu, Z. Li, Y. Li, Y. Feng and W. Feng, *Carbon*, 2021, **181**, 9-15.
- H. y. Wang, L. Zhou, H. m. Yu, X. d. Tang, C. Xing, G. Nie, H. Akafzade, S. y. Wang and W. Chen, *Adv. Opt. Mater.*, 2022, 10, 2200678.
- 7. J. Bai, G. Yuan, X. Chen, L. Zhang, Y. Zhu, X. Wang and L. Ren, Adv. Sci. (Weinh), 2022, 9, e2104278.
- 8. Q. Li, M. Zhou, Q. Yang, Q. Wu, J. Shi, A. Gong and M. Yang, Chem. Mater., 2016, 28, 8221-8227.
- 9. Y. Liu, M. Al-Salihi, Y. Guo, R. Ziniuk, S. Cai, L. Wang, Y. Li, Z. Yang, D. Peng, K. Xi, Z. An, X. Jia, L. Liu, W. Yan and J. Qu, *Light Sci. Appl.*, 2022, **11**, 163.
- S.-Y. Song, L.-Z. Sui, K.-K. Liu, Q. Cao, W.-B. Zhao, Y.-C. Liang, C.-F. Lv, J.-H. Zang, Y. Shang, Q. Lou, X.-G. Yang, L. Dong, K.-J. Yuan and C.-X. Shan, *Nano Res.*, 2021, 14, 2231-2240.
- 11. K. Jiang, S. Hu, Y. Wang, Z. Li and H. Lin, *Small*, 2020, **16**, e2001909.
- 12. B. Zhao, R. Yu, K. Xu, C. Zou, H. Ma, S. Qu and Z. a. Tan, J. Mater. Chem. C, 2021, 9, 15577-15582.
- 13. X. Bao, E. V. Ushakova, E. Liu, Z. Zhou, D. Li, D. Zhou, S. Qu and A. L. Rogach, *Nanoscale*, 2019, **11**, 14250-14255.