Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

New hybrid: $[H-\beta-(4-Pyridyl)-Ala-OH]$ tetrafluoroborate - crystal structure and strong piezoelectricity

Maciej Wojtaś,*^a Tamara J. Bednarchuk, ^b and Igor Bdikin^c

Supplementary Information

Table S1 Geometric parameters (Å, $^\circ)$ for $[4PyAla][BF_4]$.

Fig. S1 B-F·· π intermolecular interactions (Å). The blue dashed line indicate N-H···F hydrogen bond.

02-C1 01-C1 F1-B1 F2-B1 N1-H1A N1-H1B N1-H1C N1-C2 F3-B1 F4-B1 C1-C2 C14-C3 C14-C13 C14-C15	$\begin{array}{c} 1.248 \ (4) \\ 1.255 \ (4) \\ 1.385 \ (6) \\ 1.375 \ (6) \\ 0.91 \\ 0.91 \\ 0.91 \\ 1.491 \ (4) \\ 1.394 \ (6) \\ 1.372 \ (6) \\ 1.534 \ (5) \\ 1.503 \ (5) \\ 1.396 \ (5) \\ 1.387 \ (5) \end{array}$	C2-H2 C2-C3 N11-H11 N11-C16 N11-C12 C3-H3A C3-H3B C13-H13 C13-C12 C15-H15 C15-C16 C16-H16 C12-H12	$\begin{array}{c} 1\\ 1.548\ (5)\\ 0.88\\ 1.355\ (6)\\ 1.340\ (6)\\ 0.99\\ 0.99\\ 0.95\\ 1.371\ (6)\\ 0.95\\ 1.364\ (6)\\ 0.95\\ 0.95\\ 0.95\\ \end{array}$
$\begin{array}{l} \text{H1A-N1-H1B} \\ \text{H1A-N1-H1C} \\ \text{H1B-N1-H1C} \\ \text{C2-N1-H1A} \\ \text{C2-N1-H1B} \\ \text{C2-N1-H1B} \\ \text{C2-N1-H1C} \\ \text{O2-C1-O1} \\ \text{O2-C1-C2} \\ \text{O1-C1-C2} \\ \text{O1-C1-C2} \\ \text{C13-C14-C3} \\ \text{C15-C14-C3} \\ \text{C15-C14-C13} \\ \text{N1-C2-C1} \\ \text{N1-C2-H2} \\ \text{N1-C2-H2} \\ \text{N1-C2-C3} \\ \text{C1-C2-H2} \\ \text{C1-C3-H3} \\ C1-C$	$\begin{array}{c} 109.5\\ 109.5\\ 109.5\\ 109.5\\ 109.5\\ 109.5\\ 125.9\ (3)\\ 117.3\ (3)\\ 116.7\ (3)\\ 121.6\ (3)\\ 121.6\ (3)\\ 109.7\ (3)\\ 109.7\ (3)\\ 109.7\\ 107.6\ (3)\\ 109.7\\ 110.5\ (3)\\ 109.7\\ 119.6\\ 119.6\\ 119.6\\ 110.8\ (3)\\ 109.5\\ \end{array}$	$\begin{array}{c} C14-C3-H3B\\ C2-C3-H3A\\ C2-C3-H3B\\ H3A-C3-H3B\\ C14-C13-H13\\ C12-C13-C14\\ C12-C13-C14\\ C12-C13-H13\\ C14-C15-H15\\ C16-C15-H15\\ N11-C16-C15\\ N11-C16-C15\\ N11-C16-H16\\ C15-C16-H16\\ N11-C12-C13\\ N11-C12-H12\\ C13-C12-H12\\ C13-C12-H12\\ F1-B1-F3\\ F2-B1-F1\\ F2-B1-F3\\ F4-B1-F1\\ F4-B1-F2\\ F4-B1-F3\\ \end{array}$	$109.5 \\ 109.5 \\ 109.5 \\ 108.1 \\ 119.9 \\ 120.3 (4) \\ 119.9 \\ 119.8 \\ 120.5 (4) \\ 119.8 \\ 120.4 (4) \\ 119.8 \\ 120.4 (4) \\ 119.8 \\ 120.4 (4) \\ 119.8 \\ 119.8 \\ 109.5 (4) \\ 110.3 (4) \\ 109.1 (4) \\ 109.1 (4) \\ 113.0 (5) \\ 106.8 (4) \\ 106.8 (4) \\ 100.5 (4) \\ 106.8 (4) \\ 100.5 (4) \\ 100.5 (4) \\ 100.6 \\ 100.5 (4) \\ 100.6 \\ 100.5 (4) \\ 100.6 \\ 100.5 (4) \\ 100.5 \\ $
02-C1-C2-N1 02-C1-C2-C3 01-C1-C2-N1 01-C1-C2-C3 N1-C2-C3-C14 C1-C2-C3-C14 C14-C13-C12-N11 C14-C15-C16-N11	156.6 (3) -84.9 (4) -26.5 (4) 92.0 (4) 177.4 (3) 57.7 (4) -0.1 (6) -0.1 (6)	C3-C14-C13-C12 C3-C14-C15-C16 C13-C14-C3-C2 C13-C14-C15-C16 C15-C14-C3-C2 C15-C14-C3-C2 C15-C14-C13-C12 C16-N11-C12-C13 C12-N11-C16-C15	175.5 (4) -175.4 (4) -106.6 (4) 1.4 (5) 70.1 (4) -1.3 (5) 1.4 (6) -1.3 (6)

^a Faculty of Chemistry, University of Wrocław, 14 Joliot–Curie, 50–383 Wrocław, Poland; E-mail: maciej.wojtas@uwr.edu.pl

^b Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław, Poland.

^c TEMA, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal.

Table S2 Geometric details of the B-F $\cdots\pi$ intermolecular interactions (Å, °).

	Y−X…Cg	X…Cg	Y…Cg	γ	Y−X…Cg	Υ-Χ, π	
[4PyAla][BF ₄]	B1-F3··· Cg^{ix}	3.030(4)	4.117(6)	8.04	133.6(3)	39.44	
Symmetry code: (ix) x, y, -1+z. Cg is the centroid of the pyridine r	ing;						

 γ - angle between Cg...X vector and ring normal;

Y-X, π - angle of the Y···X bond

with the π - plane (i.e. Perpendicular = 0°, Parallel = 0°). height

Fig. S2 The images recorded on PFM scan (a) Topography; (b) PFM, $A \cdot \cos(\Phi)$; (c) PFM, Φ . A and Φ stand for amplitude and phase, respectively

Fig. S3 Driving voltage dependence of in-plane piezoresponse of LNO and $[4PyAla][BF_4]$.

1-2