Supplementary information

AlInGaN nanocrystal seeded growth of weak p-type β-(In_{0.1}Ga_{0.9})₂O₃

nanowires and nanobelts

Haojie Li^a, Zhengyuan Wu^{a,*}, Pengfei Tian^a, Jinchai Li^b, Junyong Kang^b, Guoqi Zhang^a,

Zhilai Fang ^{a,*}

^a Academy for Engineering and Technology, School of Information Science and Technology,

Fudan University, Shanghai 200433, China

^b Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices,

Department of Physics, Xiamen University, Xiamen 361005, China

E-mail address: <u>zlfang@fudan.edu.cn</u>, <u>zhengyuanwu@fudan.edu.cn</u>

^{*} Corresponding author.

E-mail address: <u>zlfang@fudan.edu.cn</u>

Contents

- SI1. The growth of AlInGaN
- SI2. Surface morphology and X-ray diffraction patterns of AlInGaN
- SI3. X-ray photoelectron spectroscopy of AlInGaN
- SI4. Growth evolution of β-(In_xGa_{1-x})₂O₃
- SI5. Crystal structure of β-(In_xGa_{1-x})₂O₃ nanowires

SI1. The growth of AlInGaN

The metalorganic vapor phase epitaxy of AlInGaN films was carried out on c-plane sapphire substrates. Trimethylgallium (TMGa), Trimethyl aluminum (TMAl), Trimethylindium (TMIn), and high-purity ammonia were used as the source precursors, and nitrogen as the carrier gas. A GaN template with a thickness of 800 nm was grown by the conventional two-step growth method. The subsequent growth of 2.2 μ m thick AlInGaN epilayers was conducted at 850°C and 50 Torr. More details for the growth of AlInGaN epilayers can be found elsewhere [*J. Cryst. Growth*, 2009, **311**, 474–477].

Figure S1. Scanning electron microscopy (SEM) and X-ray diffraction of AlGaInN films

The lattice parameters of AlInGaN films are estimated to be 3.205 and 5.212 Å corresponding to the a-direction axis and c-direction axis.

SI3. X-ray photoelectron spectroscopy of AlGaInN

Figure S2. X-ray photoelectron spectroscopy spectra of Ga2p3/2, In3d, O1s, and N1s photoelectron peaks from AlInGaN films.

Stoichiometric information of AlInGaN films is identified as Al_{0.2}In_{0.2}Ga_{0.6}N.

SI4. Growth evolution of β-(In_xGa_{1-x})₂O₃

Figure S3. SEM images of β -(In_xGa_{1-x})₂O₃ samples with growth time of 30 (sample A), 60 (sample B), 120 (sample C) mins, respectively.

SI5. Crystal structure of β-(In_xGa_{1-x})₂O₃ nanowires

Figure S4. X-ray diffraction of the sample B.