Prediction of CO₂ Adsorption Properties of Azo, Azoxy and Azodioxy-linked Porous Organic Polymers Guided by Electrostatic Potential

Tea Frey, Barbara Panić, Petar Šutalo, Mladen Borovina, Ivana Biljan* and Ivan Kodrin*

Supporting information

Table of Contents

1.	Interactions of CO_2 and N_2 with the selected organic molecules/fragments	3
2.	Model geometries of 2D layered structures	. 22
3.	Electrostatic potential	.26
4.	Adsorption isotherms and density plots	. 27
5.	Correlation between the ESP values and CO ₂ uptakes	. 33
6.	Synthesis of 2,4,6-tris(4-aminophenyl)pyridine (TAPP)	. 34
7.	¹³ C CP/MAS NMR spectrum of azo polymer TPP-azo (4)	34

1. Interactions of CO₂ and N₂ with the selected organic molecules/fragments

Figure S1. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the most stable complexes of fragments **A** and **B** (amine vs. pyridine) and fragments **D** (azo vs. azoxy vs. azodioxy, modeled in our previous study) with one molecule of N₂ or CO₂. The calculated BSSE corrected interaction energies (E_{int} in kJ mol⁻¹) are shown under the structures. The green arrows indicate interactions that become stronger after structural changes.

Figure S2. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the most stable complexes of fragment **C** (TPA and TPP trigonal building units connected to phenyl ring by azo, azoxy or azodioxy bond) with one molecule of N₂ or CO₂. The calculated BSSE corrected interaction energies (E_{int} in kJ mol⁻¹) are shown under the structures. The green arrows indicate interactions that become stronger after structural changes. The red arrows indicate interactions that become weaker after the structural changes. Oxygen in azoxy bond adopts two orientations, one in which it is closer to the trigonal building unit (2C and 5C), and the other in which it is closer to the upper phenyl ring (2C' and 5C').

Figure S3. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragments A_{amine} and $A_{pyridine}$ and one molecule of N₂ or CO₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

 $B_{amine} \cdots N_2/1$ $E_{rel} = 0.00 \text{ kJ mol}^{-1}$ $E_{int} = -9.3 \text{ kJ mol}^{-1}$

Figure S4. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment \mathbf{B}_{amine} and one molecule of N₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S5. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment \mathbf{B}_{amine} and one molecule of CO₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S6. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment $\mathbf{B}_{pyridine}$ and one molecule of N₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S7. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment $\mathbf{B}_{pyridine}$ and one molecule of CO₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S8. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **1C** and one molecule of N₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S9. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **1C** and one molecule of CO₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S10. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **2C** and one molecule of N₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S11. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **2C**' and one molecule of N₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S12. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **2C** and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S13. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **2C'** and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S14. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **3C** and one molecule of N₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

 $E_{\rm rel} = 0.00 \text{ kJ mol}^{-1}$ $E_{\rm int} = -25.3 \text{ kJ mol}^{-1}$

Figure S15. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **3C** and one molecule of CO₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S16. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **4C** and one molecule of N₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S17. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **4C** and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S18. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **5C** and one molecule of N₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S19. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **5C**' and one molecule of N₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S20. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **5C** and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S21. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **5C**' and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S22. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **6C** and one molecule of N₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S23. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **6C** and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S24. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **D**_{azo} and one molecule of N₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S25. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **D**_{azo} and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S26. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **D**_{azoxy} and one molecule of N₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

Figure S27. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment D_{azoxy} and one molecule of CO₂. Relative energies of the selected complexes (E_{rel}) and BSSE corrected interaction energies (E_{int}).

Figure S29. The B3LYP-D3(BJ)/def2-TZVP optimized geometries of the selected complexes between fragment **D**_{azodioxy} and one molecule of CO₂. Relative energies of the selected complexes (*E*_{rel}) and BSSE corrected interaction energies (*E*_{int}).

	1C…N2	3C…N₂	4C…N ₂	6C…N2	1C…CO ₂	3C…CO ₂	4C…CO ₂	6C…CO ₂
ΔE	-10.25	-11.86	-11.17	-11.14	-17.23	-25.34	-22.78	-21.75
EL	-16.65	-19.82	-17.59	-17.48	-32.39	-44.74	-42.95	-40.85
СТ	-19.58	-20.41	-22.90	-22.81	-19.85	-24.22	-21.69	-20.79
CORE	25.97	28.38	29.33	29.15	35.01	43.62	41.86	39.89
ES	-6.82	-8.37	-5.72	-5.67	-17.71	-24.46	-22.43	-21.96
POL	-19.64	-22.89	-23.74	-23.63	-29.30	-40.58	-41.04	-37.77
XC	-26.12	-28.60	-29.76	-29.70	-33.89	-46.22	-43.48	-41.53
SE1	2.09	2.97	1.73	1.73	3.78	5.98	5.93	5.30
SE2	7.72	8.46	10.13	10.08	10.84	14.32	14.58	13.59
DEF1	15.61	20.04	13.88	13.84	34.48	43.14	38.93	39.97
DEF2	46.30	48.37	57.07	56.83	49.04	67.02	66.94	60.35
POL+SE	-9.83	-11.45	-11.87	-11.82	-14.68	-20.27	-20.53	-18.89

Table S1. Natural energy decomposition analysis (NEDA, energy contributions in kj mol⁻¹) of the selected complexes with N_2 and CO_2 .

2. Model geometries of 2D layered structures

Table S2. Unit cell parameters (*a*, *b*, *c*, α , β and γ) of the optimised geometries of compounds **1–6** modelled as isolated 2D layers, AA, slipped AA' and AB stacked structures. The labels of the layer group and space groups used in the CRYSTAL17.

	Compound	Space group	CRYSTAL17 label	a/Å	b/Å	c/Å	α/°	β/°	γ/°
	1	P 3*	65	20.6105	20.6105				120
	2	P 3*	65	20.7126	20.7126				120
	3	P 3*	65	21.0133	21.0133				120
2D layers	4	P 1*	1	26.0279	26.1225				123.5
	5	P 1*	1	26.3216	25.9899				123.1
	6	P 1*	1	26.4277	26.4674				123.5
	1аа	P 3	147	20.6340	20.6340	3.8350	90	90	120
	2 AA	P 3	143	20.7754	20.7754	3.8074	90	90	120
	3аа	P 3	147	20.9216	20.9216	3.7374	90	90	120
AA	4 AA	P 1	2	25.8345	26.1224	3.5616	83.2	83.7	123.1
	5аа	<i>P</i> 1	1	26.4096	25.4401	3.6050	87.7	67.2	122.7
	6аа	P 1	2	26.2274	26.2238	3.5321	93.9	94.7	123
	1 _{incl}	P 1	2	18.9442	10.7545	6.4863	108.9	111.4	83.9
۸۸'	3 _{incl}	P 1	2	15.3047	11.0538	7.2819	111.7	48.3	108.4
(inclined)	4 _{incl}	P 1	2	25.0409	25.6254	7.7386	136.4	33.2	124.8
(inclined)	5 _{incl}	P 1	2	24.8446	25.2093	6.9099	134.8	36.8	124.1
	6 _{incl}	P 1	2	25.4338	25.8517	7.0414	135.0	38.9	124.2
	1	$P\overline{1}$	2	20 5117	20 6276	8 0509	106.8	81 0	110 7
AA'	Iserr	F 1 _	2	20.0117	20.0270	0.0000	100.0	01.5	113.7
(serrated)	3 _{serr}	P <u>1</u>	2	20.9938	20.8784	7.8142	104.5	85.0	119.7
	4 _{serr}	<i>P</i> 1	2	26.0300	22.7862	6.8638	95.5	80.3	116.4
	1 _{AB}	P 3	147	20.6388	20.6388	7.2802	90	90	120
	2 _{AB}	P 3	143	20.7754	20.7754	7.3696	90	90	120
AD	3 _{AB}	P 3	147	20.9130	20.9130	7.1398	90	90	120
	4 _{AB}	P 1	2	25.9475	23.7163	6.0332	88.0	93.4	118.8

* The corresponding layer group number, according to the International Tables for Crystallography.

Compound	Space group	Stacking mode	Number of atoms	<i>E</i> / kJ mol ^{−1}
1 AA	P 3	AA	68	0.00
1ав	P 3	AB	136	64.32
1 _{serr}	P 1	AA' – serrated	136	0.96
1 _{incl}	P 1	AA' – inclined	68	57.99
2 AA	P 3	AA	71	0.00
2 _{AB}	P 3	AB	142	83.06
3 AA	P 3	AA	74	0.00
3 AB	P 3	AB	148	99.04
3 _{serr}	P 1	AA' – serrated	148	12.50
3 _{incl}	P 1	AA' – inclined	74	12.19
4 AA	P 1	AA	82	0.00
4 _{AB}	P 1	AB	164	127.50
4 _{incl}	P 1	AA' – inclined	164	-2.85
4 _{serr}	P 1	AA' – serrated	164	-6.27
5 _{AA}	<i>P</i> 1	AA	85	0.00
5 _{incl}	P 1	AA' – inclined	170	-4.76
6аа	P 1	AA	88	0.00
6 _{incl}	P 1	AA' – inclined	176	4.94

Table S3. Relative energies of the optimised geometries scaled on the same number of atoms. Energiesare reported relative to the energies of the AA configurations for each compound 1-6 individually.

Figure S30. Schematic representation of different stacking modes of amine derivatives (TPA). Optimization was performed at the PBE-D3/pob-TZVP-rev2 level of theory.

Figure S31. Schematic representation of different stacking modes of pyridine derivatives (TPP). Optimization was performed at the PBE-D3/pob-TZVP-rev2 level of theory.

3. Electrostatic potential

Table S4. Electrostatic potential values (ESP) of the most negative and the most positive regions of the selected systems **1**–**6** optimized at the PBE-D3/pob-TZVP-rev2 level of theory.

Compound E / kJ mol ⁻¹ Stacking mode		Ν	0	Н	N(Py)	
1 2D			-107		101	
1 _{AA}	0.00	AA	-104 (-120)		116	
1 _{AB}	64.32	AB	-101 -96		115	
1 _{serr}	0.96	AA' – serrated	-96(-112)		122	
1 _{incl}	57.99	AA' – inclined	-87 -126		128	
2 _{2D}	0.00	AA	-73	-116	122	
2 AA	0.00	AA	-64(-69)	-127(-90)	146	
2 _{AB}	83.06	AB	-64 -57	-130 -118	133	
3 _{2D}				-131	114	
3 AA	0.00	AA		-110(-64)	143	
3 AB	99.04	AB		-137 -129	122	
3 _{serr}	12.50	AA' – serrated		-109(-102)	151	
3 incl	12.19	AA' - inclined		-87 -132	129	
4 _{2D}			-78		133	-96
4 AA	0.00	AA	-76 (-93)		144	-128
4 _{AB}	127.50	AB	-103 -98		140	-94
4 _{serr}	-6.27	AA' – serrated	-114(-141)		144	-136
4 _{incl}	-2.85	AA' – inclined	-96 -69		153	
5 2D			-55	-91	142	-94
5 AA	0.00	AA	-40(-48)	-85(-113)	163	-102
5incl	-4.76	AA' – inclined	-72	-98	156	
6 2D				-110	143	-84
6 AA	0.00	AA		-83(-63)	166	-100
6 _{incl}	4.94	AA' – inclined		-123 -94	136 115	

4. Adsorption isotherms and density plots

Table S5. Calculated framework properties of the AA, AA' slipped and AB stacked 2D layered compounds **1–6** (framework density, available pore volume and nitrogen surface area). The size of the simulation box used in the GCMC calculations.

	Compound	GCMC simulation box	Framework density, g/cm³	Available pore volume, cm³/g	Average surface area, m²/g
	1 AA	2×2×8	0.667	0.884	1858
	2 AA	2×2×8	0.720	0.805	1686
	3 AA	2×2×8	0.779	0.728	1501
AA	4 AA	2×2×8	0.589	1.063	1880
	5аа	2×2×8	0.692	0.827	1588
	6 _{AA}	2×2×8	0.651	0.959	1636
	1 _{incl}	2×2×8	0.811	0.518	1395
	3 _{incl}	2×2×8	1.141	0.303	742
AA ^r (inclined)	4 _{incl}	2×2×8	1.234	0.104	132
(inclined)	5 _{incl}	2×2×8	1.339	0.084	194
	6incl	2×2×8	1.276	0.169	342
	1 _{serr}	2×2×8	0.667	0.867	1911
AA [*]	3 _{serr}	2×2×8	0.768	0.722	1591
(Serraleu)	4 _{serr}	2×2×8	0.638	0.917	1783
	1 _{АВ}	2×2×8	0.703	0.781	2327
	2 _{АВ}	2×2×8	0.743	0.734	2051
AD	Зав	2×2×8	0.816	0.627	1570
	4 _{AB}	2×2×8	0.708	0.681	1894

Figure S32. CO₂ and N₂ adsorption isotherms of 1−3 at 298 K. CO₂/N₂ selectivities of 1−3 for binary mixtures (15 : 85 molar ratio) at 298 K.

Figure S33. CO₂ and N₂ adsorption isotherms of **4–6** at 298 K. CO₂/N₂ selectivities of **4–6** for binary mixtures (15 : 85 molar ratio) at 298 K.

Figure S34. Pores size distribution of AA, AA' slipped and AB stacked structures of 1-6.

Figure S35. Density plots showing the average distribution of adsorbed N₂ and CO₂ molecules on differently stacked 2D layered frameworks of **3** at 298 K and 1 bar.

Compound	Average	Van der Waals	Coulomb	Van der Waals	Coulomb
3 _{AA} CO ₂	-11.42	-10.86	-0.56	95%	5%
3 _{AB} CO ₂	-22.75	-20.14	-2.62	88%	12%
3 _{incl} ····CO ₂	-16.16	-14.88	-1.28	92%	8%
3serr ··· CO2	-12.79	-12.08	-0.70	95%	5%
3 _{AA} N ₂	-5.95	-5.89	-0.07	99%	1%
3 _{AB} …N ₂	-10.58	-10.25	-0.33	97%	3%
3 _{incl} N ₂	-8.53	-8.43	-0.10	99%	1%
3 _{serr} ⋯N ₂	-6.56	-6.49	-0.07	99%	1%

Table S6. Adsorption enthalpies (in kJ mol⁻¹) of CO₂ and N₂ with compound **3**. Van der Waals and Coulomb contributions to average host-adsorbate energies.

Figure S36. Average host-adsorbate energies, van der Waals and Coulomb contributions to average host-adsorbate energies for interactions of CO_2 (a) and N_2 (b) with compound **3**.

5. Correlation between the ESP values and CO₂ uptakes

Figure S37. Correlations between the ESP values (in kJ mol⁻¹ e⁻¹, reversed values on the right y-axis) calculated for the most negative regions (oxygens or nitrogens in azo, azoxy and azodioxy linakges) and CO2 uptakes (in mg g⁻¹, left y-axis) at 298 K and 1 bar calculated for different stacking modes of 1-6.

6. Synthesis of 2,4,6-tris(4-aminophenyl)pyridine (TAPP)

TAPP was synthesized by the procedure described in the literature.¹

¹H NMR (400 MHz, DMSO-d₆) δ / ppm: 7.97 (m, 4H), 7.68–7.66 (m, 4H), 6.70–6.66 (m, 6H), 5.44 (s, 2H), 5.37 (s, 4H).

¹³C NMR (100 MHz, DMSO-d₆) *δ* / ppm: 156.7, 150.3, 150.1, 149.1, 128.0, 127.4, 125.4, 114.4, 114.0, 111.6.

IR (ATR) *ũ* / cm⁻¹: 3401, 3299, 3203, 1594, 1540.

7. ¹³C CP/MAS NMR spectrum of azo polymer TPP-azo (4)

Figure S38. ¹³C CP/MAS NMR spectrum of azo polymer TPP-azo (4).

¹ Chen, W.; Yan, W.; Wu, S.; Xu, Z.; Yeung, K. W. K.; Yi, C. Preparation and Properties of Novel Triphenylpyridine-Containing Hyperbranched Polyimides Derived from 2,4,6-Tris(4-Aminophenyl)Pyridine under Microwave Irradiation. Macromol. Chem. Phys. 2010, 211 (16), 1803–1813. https://doi.org/10.1002/macp.201000193.