Supporting Information

Additive Controlled Packing Polymorphism in Series of Halogen Substituted Dithieno[3,2a:2',3'-c]phenazines

Boris B. Averkiev,^a Raúl Castañeda,^b Marina S. Fonari,^{b,c} Evgheni V. Jucov,^b and Tatiana V.

Timofeeva^{b*}

^aDepartment of Chemistry, Kansas State University, Manhattan, KS 66506, United States

^bDepartment of Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, United States E-

mail: tvtimofeeva@nmhu.edu

^cInstitute of Applied Physics, Moldova State University, Academiei str, 5 MD2028, Chisinau Republic of Moldova; E-mail: <u>fonari.xray@gmail.com</u>

 Table S1. Intermolecular contacts shorter than van der Waals interactions in the studied polymorphs

Numb	Atom1Atom2	Length, Å	Length-VdW,	Symmetry operation for					
er		_	Å	the 2-nd atom					
α H–DTPhz									
1	S2C10	3.476	-0.024	x-1, y, z					
2	C9C16	3.345	-0.055	x-1, y, z					
3	H1C15	2.752	-0.148	1.5-x, 1-y, z-1/2					
4	H8N1	2.528	-0.222	1-x, y-1/2, 1/2-z					
5	H8H2	2.306	-0.094	1-x, y-1/2, 1/2-z					
6	C8H16	2.833	-0.067	2-x, y-1/2, 1/2-z					
7	N2H13	2.725	-0.025	x-1/2, 1/2-y, 1-z					
β H–DTPhz									
1	H14AN1B	2.615	-0.135	x-1, y-1, z					
2	C13AH1B	2.868	-0.032	x, y-1, z					
3	S2AN1B	3.296	-0.054	x, y, z					
4	S2AH2B	2.950	-0.050	x, y, z					
5	S2AH16B	2.962	-0.038	x, y, z					
6	H7AS2B	2.927	-0.073	1-x, 1-y, 1-z					
7	S1BS2B	3.486	-0.114	1-x, 2-y, 1-z					
8	H13BH14B	2.158	-0.242	3-x, 1-y, 1-z					
		a F-E	DTPhz						
1	S2AS2A	3.513	-0.087	-x, -y, 1-z					
2	F1AH16A	2.412	-0.258	-x, 1-y, -z					
3	C11AC13F	3.257	-0.143	1-x, 1-y, 1-z					
4	C13AC15F	3.242	-0.158	1-x, 1-y, 1-z					
5	C15AF2F	3.102	-0.068	1-x, 1-y, 1-z					
6	C15AC14F	3.376	-0.024	1-x, 1-y, 1-z					

7	C14AC15F	3.392	-0.008	1-x, 1-y, 1-z
8	C14AC14F	3.355	-0.045	1-x, 1-y, 1-z
9	H8AF1E	2.446	-0.224	x, y-1, z
10	C5AC16E	3.331	-0.069	-x, 1-y, 1-z
11	C13AC4E	3.246	-0.154	-x, 1-y, 1-z
12	C14AC5E	3.370	-0.030	-x, 1-y, 1-z
13	C1AH13D	2.796	-0.104	x-1, y, z
14	H1AN2D	2.519	-0.231	x-1, y, z
15	S1AC10D	3.363	-0.137	1-x, 1-y, 1-z
16	H7AC2C	2.876	-0.024	x, y-1, z
17	H7AC1C	2.886	-0.014	x, y-1, z
18	N1AH7C	2.739	-0.011	x, y, z
19	F2N1C	2.874	-0.146	-x, 1-y, -z
20	F2C9C	2.911	-0.259	-x, 1-y, -z
21	H1FF2B	2.647	-0.023	x, 1+y, z
22	F1FC8B	3.161	-0.009	x, 1+y, 1+z
23	F1FH8B	2.579	-0.091	x, 1+y, 1+z
24	C6FC12B	3.347	-0.053	1-x, 1-y, 1-z
25	C13FC3B	3.321	-0.079	1-x, 1-y, 1-z
26	C11FC6B	3.390	-0.010	1-x, 1-y, 1-z
27	C8FC14B	3.354	-0.046	1-x, 1-y, 1-z
28	C14S1B	3.476	-0.024	1-x, 1-y, 1-z
29	S2FC5D	3.345	-0.155	x, y, z
30	S2FC4D	3.313	-0.187	x, y, z
31	H1FF1D	2.539	-0.131	2-x, 2-y, 1-z
32	F1FC16C	3.146	-0.024	1+x, y, 1+z
33	S2BS2B	3.204	-0.396	1-x, -y, -z
34	H2BC1B	2.757	-0.143	1-x, 1-y, -z
35	H2BH1B	2.240	-0.160	1-x, 1-y, -z
36	C13BC11E	3.365	-0.035	1-x, 1-y, 1-z
37	C15BC13E	3.209	-0.191	1-x, 1-y, 1-z
38	C14BC14E	3.361	-0.039	1-x, 1-y, 1-z
39	F1BF2D	2.744	-0.196	x-1, y, z
40	N2BH1D	2.741	-0.009	x, y-1, z
41	H7BS1D	2.904	-0.096	x, y-1, z
42	F1BH8D	2.481	-0.189	x, y, z
43	N1BH8C	2.652	-0.098	x, y, z
44	H8BF1C	2.640	-0.030	1+x, y-1, z
45	F2EC14D	3.117	-0.053	x-1, y, z
46	F1EC16D	3.154	-0.016	x-1, y, z
47	N1EC1D	3.195	-0.055	1-x, 2-y, 1-z
48	N1EH1D	2.481	-0.269	1-x, 2-y, 1-z
49	H2EC2D	2.790	-0.110	1-x, 2-y, 1-z
50	S2EC5C	3.366	-0.134	x, y, 1+z
51	C2EH2C	2.893	-0.007	-x, 2-y, 1-z
52	C4DC16C	3.295	-0.105	1+x, y, z

53	C16DC4C	3.292	-0.108	1+x, y, z					
β F-DTPhz									
1	F2S3	3.093	-0.177	1+x, y, z					
2	C2C23	3.387	-0.013	2-x, 1-y, 1-z					
3	С1Н39	2.745	-0.155	x, y, z					
4	H1N6	2.558	-0.192	x, y, z					
5	S1H34	2.890	-0.110	1-x, -y, -z					
6	C1N5	3.227	-0.023	1-x, -y, -z					
7	H1N5	2.614	-0.136	1-x, -y, -z					
8	N2H40	2.646	-0.104	2-x, 1-y, 1-z					
9	H8C50	2.887	-0.013	x, y, 1+z					
10	C18H40	2.876	-0.024	x, y, z					
11	H23C33	2.883	-0.017	1+x, 1+y, 1+z					
12	H18C56	2.849	-0.051	x, y, z					
13	C24F7	3.149	-0.021	x, 1+y, 1+z					
14	H24F7	2.611	-0.059	x, 1+y, 1+z					
15	C24F8	3.063	-0.107	2-x, 1-y, 1-z					
16	H24F8	2.647	-0.023	2-x, 1-y, 1-z					
17	C24S8	3.429	-0.071	2-x, 2-y, 1-z					
18	C48C60	3.297	-0.103	x, y, z					
		γ F–D	TPhz	· · · ·					
1	C7C12	3.341	-0.059	x, y-1, z					
2	F1H3	2.634	-0.036	1-x, y-1, 1-z					
3	S1S1	3.488	-0.112	1/2-x, 1.5-y, 1-z					
4	S1S2	3.577	-0.023	1/2-x, 1.5-y, 1-z					
		α Cl-l	DTPhz						
1	C4Cl2	3.365	-0.085	1/2-x, y-1/2, 1/2-z					
2	Cl2H1	2.909	-0.041	x-1.5, 1.5-y, z-1/2					
3	N1H8	2.677	-0.073	x-1/2, 1.5-y, 1/2+z					
4	H2C7	2.897	-0.003	x-1/2, 1.5-y, 1/2+z					
	1	β Cl–I	DTPhz						
1	C1BN1B	3.202	-0.048	1-x, y-1/2, 1.5-z					
2	H1BN1B	2.538	-0.212	1-x, y-1/2, 1.5-z					
3	S2BC10	3.471	-0.029	x-1, y, z					
4	C8BC6A	3.330	-0.070	x-1, y, z					
5	C16BC4A	3.273	-0.127	x, y, z					
6	C12BC10	3.395	-0.005	x, y, z					
7	C4BC16A	3.284	-0.116	x, y, z					
8	C11BC3A	3.367	-0.033	x, y, z					
9	C9BN1A	3.245	-0.005	x, y, z					
10	C6BC12A	3.392	-0.008	x, y, z					
11	C7BC13A	3.368	-0.032	x, y, z					
12	Cl2BCl3A	3.411	-0.039	x, 1+y, z					
13	N2BH8A	2.705	-0.045	x-1/2, 1.5-y, 1-z					
14	H7BC8A	2.813	-0.087	x-1/2, 1.5-y, 1-z					
15	Cl2AN2A	3.271	-0.029	x-1/2, 1/2-y, 1-z					

Br–DTPhz								
1	Br2AN2A	3.193	-0.207	x-1/2, 1/2-y, 1-z				
2	C12ABr2B	3.541	-0.009	x, y-1, z				
3	C13ABr2B	3.486	-0.064	x, y-1, z				
4	N1AC9B	3.227	-0.023	x, y, z				
5	C3AC11B	3.344	-0.056	x, y, z				
6	C4AC16B	3.394	-0.006	x, y, z				
7	C10AC12B	3.397	-0.003	x, y, z				
8	C12AC6B	3.377	-0.023	x, y, z				
9	C13AC7B	3.334	-0.066	x, y, z				
10	C16AC4B	3.288	-0.112	x, y, z				
11	S2AC7B	3.484	-0.016	1+x, y, z				
12	C6AC8B	3.311	-0.089	1+x, y, z				
13	C10AS2B	3.480	-0.020	1+x, y, z				
14	H13ABr2B	3.046	-0.004	x-1/2, 1.5-y, 1-z				
15	Br2AH8B	3.023	-0.027	1/2+x, 1/2-y, 1-z				
16	С8АН7В	2.793	-0.107	1/2+x, 1.5-y, 1-z				
17	H8AN2B	2.725	-0.025	1/2+x, 1.5-y, 1-z				
18	H1BN1B	2.612	-0.138	-x, y-1/2, 1/2-z				

Figure S1. Hirshfeld surface mapped with d_{norm} (left), shape index (middle), curvedness (middle), and π -stacking area (right) for compound α H–DTPhz.

Figure S2. Fingerprint plots for compound α H–DTPhz: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecule.

Figure S3. Hirshfeld surface mapped with d_{norm} (left), shape index (middle), curvedness (middle) and π -stacking area (right) for compound β H–DTPhz.

Figure S4. Fingerprint plots for compound β H–DTPhz: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules.

Figure S5. Hirshfeld surface mapped with d_{norm} (left), shape index (middle), curvedness (middle) and fragment patch (right) for compound α F–DTPhz.

Figure S6. Fingerprint plots for **compound** α **F–DTPhz**: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules.

Figure S7. Hirshfeld surface mapped with d_{norm} (left), fragment patch (middle), curvedness (middle) and π -stacking area (right) for compound β **F–DTPhz**.

Figure S8. Fingerprint plots for **compound** β **F–DTPhz**: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules.

Figure S9. Hirshfeld surface mapped with d_{norm} (left), shape index (middle), curvedness (middle) and π -stacking area (right) for compound γ **F–DTPhz**.

Figure S10. Fingerprint plots for compound γ **F–DTPhz**: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules.

Figure S11. Hirshfeld surface mapped with d_{norm} (left), shape index (middle), curvedness (middle) and π -stacking area (right) for compound α Cl–DTPhz.

Figure S12. Fingerprint plots for compound α Cl–DTPhz: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules.

Figure S13. Hirshfeld surface mapped with d_{norm} (left), shape index (middle), curvedness (middle) and π -stacking area (right) for compound β Cl–DTPhz.

Figure S14. Fingerprint plots for compound β Cl–DTPhz: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules.

Figure S15. Hirshfeld surface mapped with d_{norm} (left), curvedness (middle) and π -stacking area (right) for compound **Br–DTPhz.**

Figure S16. Fingerprint plots for compound **Br–DTPhz**: full and resolved into the most meaningful interactions showing the percentages of contacts contributed to the total Hirshfeld surface area of molecules.

Compound	НН	СН	SH/	C	NH/	NC/	SS,	NS	HalS	HalC/	HalH/	HalHal	HalN/	NN,
	,%	/HC,	HS,	C	HN,	CN,	%	/SN,%	/SHal,	CHal,%	HHal,	,%	NHal,	%
		%	%		%	%			%		%		%	
a H–DTPhz	35.7	16.2	9.0	8.8	6.6	6.9	4.6	0.2	-	-	-	-	-	-
β H–DTPhz	34.6	18.5	12.1	12.6	7.2	3.3	2.4	2.5	-	-	-	-	-	-
a F-DTPhz	20.8	7.7	7.3	15.0	5.3	4.1	3.9	0.3	5.9	5.3	13.9	2.8	0.6	0.9
β F-DTPhz	18.8	8.9	8.8	11.6	4.8	5.3	3.0	0.7	10.3	2.7	12.1	4.9	0.8	0.1
γ F–DTPhz	21.0	10.5	4.2	8.8	5.8	6.2	6.1	0.3	1.2	5.3	15.3	3.4	0.2	-
a Cl-DTPhz	22.8	6.1	4.2	8.7	6.2	5.1	0.4	0.7	11.7	10.9	10.8	1.4	0.2	-
β Cl-DTPhz	23.0	5.5	9.4	7.9	6.4	-	-	1.7	8.8	5.2	18.4	2.6	3.2	-
Br-DTPhz	22.3	6.1	8.9	7.5	5.7	-	-	1.8	9.3	5.8	19.3	2.8	3.5	-
Range	18.8-	5.5-18.5	4.2-	7.5-	5.3-6.4	3.3-6.9	0.4-6.1	0.2-2.5	1.2-11.7	2.7-10.9	10.8-19.3	1.4-4.9	0.2-3.5	0.1-0.9
	35.7		12.1	15.0										

Table S2. Percent distribution of meaningful interactions in the studied polymorphs.

 Table S3. Lattice energy of polymorphs (Rydberg) calculated with PBE-D method using pbe-rrkjus ultrasoft pseudopotentials.

structure type	α H-DTPhz	βH- DTPhz	αF- DTPhz	β F-DTPhz	γ F-DTPhz	α Cl-DTPhz	β Cl-DTPhz
Н	-277.0118	-277.0089	-276.9962	-277.0064	-277.0064	-277.0073	-276.9948
F	-373.7560	-373.7478	-373.7555	-373.7565	-373.7565	-373.7562	-373.7554
Cl	-343.9434	-343.9291	-343.9429	-343.9472	-343.9461	-343.9546	-343.9549
Br						-342.3669	-342.3684