Supplementary Information

Structural aspects of dehydration and rehydration in adenosine 5'diphosphate (ADP)–potassium–water system

Oskar Kaszubowski, Katarzyna Ślepokura

University of Wrocław, Faculty of Chemistry, 14. F. Joliot-Curie, 50-383 Wrocław, Poland

Corresponding author Email: oskar.kaszubowski@uwr.edu.pl

Fig. S1 Atom numbering scheme for reported structures. ADP in neutral form is shown.

Fig. S2 Asymmetric unit of crystal $K(ADP) \cdot 4H_2O$ (I). Displacement ellipsoids are shown at the 50% probability level.

Fig. S3 Asymmetric unit of crystal $K(ADP) \cdot 2H_2O$ (II). Transparent ellipsoids and bonds represent atoms with <1 site occupation factors values. Displacement ellipsoids are shown at the 50% probability level.

Fig. S4 Asymmetric unit of crystal K(ADP) (III). Displacement ellipsoids are shown at the 50% probability level.

Fig. S5 Asymmetric unit of crystal $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVa**). Transparent spheres, ellipsoids and bonds represent atoms with <1 site occupation factors values. Displacement ellipsoids are shown at the 50% probability level. Disordered ribose fragment with atom labels is shown below.

Fig. S6 Asymmetric unit of crystal $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVb**). Transparent spheres, ellipsoids and bonds represent atoms with <1 site occupation factors values. Displacement ellipsoids are shown at the 50% probability level. Two ADP⁻ anions and K⁺ cations, Zundel cation and water molecules with atom labels are shown below.

K(ADP)·4H₂O (I)

K(ADP)·2H₂O (II) (K1)

K(ADP)·2H₂O (II) (K1X)

K(ADP) (III)

Fig. S7 Comparison of packing diagrams of structures **I**, **II** and **III**. For **II**, two diagrams with different potassium ions are shown (K1 and K1X; SOF = 0.5). Hydrogen atoms and selected water molecules are omitted for clarity.

 $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (IVb)

 $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (IVa)

Fig. S8 Comparison of packing diagrams of structures **IVa** and **IVb**. For **IVb**, disorder of potassium cations and water molecules is omitted and diagram for only one potassium ion is shown (K1; SOF = 0.744(7)). Disordered parts in **IVa** are presented with transparent atoms, bonds and polyhedra. Selected water molecules, oxygen atoms of Zundel cation and hydrogen atoms are omitted for clarity.

	_			IV	a	IN	/b
	I	11	III –	_	Y	Α	В
P1-05'	1.594(3)	1.602(3)	1.600(7)	1.57	7(6)	1.588(2)	1.585(2)
P1-011	1.481(3)	1.480(3)	1.469(7)	1.47	2(6)	1.486(2)	1.490(2)
P1-012	1.487(3)	1.483(3)	1.490(8)	1.46	4(6)	1.493(2)	1.493(2)
P1-013	1.620(3)	1.617(3)	1.601(6)	1.60	0(6)	1.605(2)	1.6047(19)
P2-013	1.609(3)	1.604(3)	1.589(6)	1.61	1(5)	1.617(2)	1.620(2)
P2-021	1.487(3)	1.482(3)	1.470(7)	1.47	1(6)	1.486(2)	1.485(2)
P2-022	1.497(3)	1.499(3)	1.499(6)	1.51	1(5)	1.505(2)	1.503(2)
P2-023	1.570(3)	1.575(3)	1.572(6)	1.56	9(5)	1.575(2)	1.563(2)
05'-P1-011	112.81(17)	111.99(18)	107.0(4)	112.	9(4)	112.56(12)	112.29(12)
O5'-P1-O12	103.80(16)	106.47(19)	111.5(4)	105.	2(3)	105.34(12)	105.95(12)
O5'-P1-O13	100.27(15)	99.26(15)	99.0(4)	100.	5(3)	99.84(11)	100.58(11)
O11-P1-O12	119.71(16)	119.16(19)	118.8(5)	117.	9(4)	118.64(13)	117.43(12)
O11-P1-O13	109.48(15)	108.96(16)	109.5(4)	109.	8(3)	109.75(12)	109.55(12)
012-P1-013	108.94(16)	109.15(18)	109.3(4)	109.	1(4)	109.00(12)	109.68(12)
O13-P2-O21	110.36(16)	110.11(17)	111.0(4)	110.	5(3)	111.11(12)	110.27(11)
013-P2-022	103.87(15)	104.93(16)	104.8(3)	103.	1(3)	102.92(11)	103.08(11)
O13-P2-O23	105.51(16)	104.32(16)	104.0(4)	105.	0(3)	104.47(11)	105.33(11)
O21-P2-O22	117.84(16)	117.43(17)	117.8(4)	117.	2(3)	117.55(12)	116.58(12)
O21-P2-O23	108.00(16)	108.71(18)	108.5(4)	110.	2(3)	109.17(13)	109.43(12)
O22-P2-O23	110.57(16)	110.52(17)	109.9(4)	109.	9(3)	110.73(12)	111.41(12)
P1-013-P2	130.09(17)	131.56(18)	133.3(4)	131.	6(4)	131.07(13)	131.52(13)
O4'-C1'-N9-C4	-144.4(3)	-149.6(4)	-147.8(8)	-154.5(8)	-150.6(9)	-157.8(2)	-152.7(2)
05'-C5'-C4'-O4'	-70.2(4)	-63.7(4)	-62.3(11)	-82.6(13)	-61.4(11)	-68.9(3)	-61.7(3)
05'-C5'-C4'-C3'	48.8(4)	57.1(5)	57.4(11)	43.9(14)	65.6(12)	49.3(3)	60.3(3)
P1-05'-C5'-C4'	148.2(3)	143.7(3)	142.3(7)	151.3(6)	150.4(6)	157.68(18)	143.62(18)
P2-013-P1-05'	148.6(2)	156.6(2)	157.3(6)	162.2(5)	162.2(5)	166.06(17)	155.39(17)
013-P1- 05'-C5'	-62.9(3)	-64.2(3)	-61.9(8)	-64.5(10)	-71.5(8)	-73.8(2)	-64.9(2)

Table S1 P–O bonds lengths [Å] and selected valence angles and torsion angles values [°] for $K(ADP)\cdot 4H_2O(I)$, $K(ADP)\cdot 2H_2O(II)$, K(ADP)(III) and $(H_5O_2)K(ADP)_2\cdot 4.25H_2O(IVa and IVb)$.

Table S2 Pseudorotation parameters (P, τ_m) and Cremer & Pople puckering parameters (q_2 , ϕ_2) for K(ADP)·4H₂O (I), K(ADP)·2H₂O (II), K(ADP) (III) and (H₅O₂)K(ADP)₂·4.25H₂O (IVa and IVb).

		ш		N	/a	N	/b
	I	II		_	Y	Α	В
P [°]	158.3(4)	165.1(4)	165.9(11)	1.8(11)	159.2(12)	18.4(3)	147.7(3)
<i>τ</i> _m [°]	40.9(3)	38.0(3)	31.9(6)	37.4(7)	37.9(8)	36.0(2)	33.2(2)
<i>q</i> ₂ [Å]	0.397(4)	0.371(4)	0.305(10)	0.362(11)	0.363(12)	0.353(3)	0.315(3)
<i>φ</i> ₂ [°]	70.2(6)	77.0(6)	77.4(18)	271.8(18)	71.0(18)	286.9(5)	60.6(5)

Table S3 Geometric parameters of the hydrogen bonds for $K(ADP) \cdot 4H_2O(I)$.

D-H…A	<i>D</i> –Н [Å]	H…A [°]	<i>D…A</i> [Å]	D-H…A [°]
023-H23…N7 ⁱ	0.84	1.85	2.688(4)	175
02′–H2O…O2W ^{iv}	0.84	1.94	2.730(4)	157
03′–H30…O2′v	0.84	2.53	3.201(4)	137
03′–H3O…O3W ^{vi}	0.84	2.21	2.805(4)	128
N1-H1····O22 ^{vii}	0.88	1.80	2.658(4)	165
N6-H61…O21 ^{vii}	0.88	2.03	2.899(4)	171
N6-H62···O22 ^{viii}	0.88	2.07	2.832(4)	144
C1'-H1'···O1W ^{iv}	1.00	2.21	3.149(5)	156
C2'-H2'···O3W ^{ix}	1.00	2.52	3.285(5)	133
C3'-H3'…O2'v	1.00	2.48	3.227(5)	131
C4'-H4'…O2' ⁱ	1.00	2.46	3.225(5)	133
C2-H2021 ^{iv}	0.95	2.34	3.276(5)	169
C8-H8…O13	0.95	2.43	3.367(5)	169
01W-H1W…021 ⁱ	0.84	1.99	2.778(4)	157
01W-H2W…03' ⁱⁱ	0.84	2.17	2.924(5)	149
O2W-H3W…O3W	0.84	1.96	2.802(5)	177
O3W-H5W…O4W ^{viii}	0.84	1.90	2.721(4)	165
O3W-H6W…O12 ^x	0.84	2.07	2.895(4)	166
04W-H7W…012 ⁱ	0.84	1.94	2.764(4)	168
O4W-H8W011×	0.84	1.95	2.753(4)	161

Symmetry codes: ⁽ⁱ⁾ x+1, y, z; ⁽ⁱⁱ⁾ x+1, y-1, z; ^(iv) x-1, y+1, z; ^(v) x+1/2, -y+3/2, -z+1; ^(vi) x, y+1, z; ^(vii) -x, y+1/2, -z+1/2; ^(viii) x-1, y, z; ^(ix) x-1/2, -y+1/2, -z+1; ^(x) x+1/2, -z+1/2; ^(x) x+1/2, -z+1; ^(x) x+1/2; ^(x) x+1/2;

Fig. S9 Coordination polyhedron of potassium ion in $K(ADP) \cdot 4H_2O(I)$. Symmetry codes are given in Table S4.

Fable S4 K–O and K–N bonds	lengths [[Å] in K(ADP)·4H₂O (I).
----------------------------	-----------	--------------	-------------

К1-О11	2.731(3)
K1-O12 ⁱ	2.805(3)
K1-O21	3.305(3)
К1-О23	2.816(3)
K1-N3 ⁱⁱ	3.593(4)
K1-O1W	2.731(4)
K1-O2W	2.753(3)
Symmetry codes: ⁽ⁱ⁾ x+1, y, z; ⁽ⁱⁱ⁾ x+1, y-1, z.	

D-H…A	<i>D</i> –H [Å]	H…A [°]	<i>D</i> …A [Å]	<i>D</i> –H…A [°]
023-H23…N7 ⁱ	0.84	1.96	2.794(5)	169
02'-H2O…O1W	0.84	1.80	2.610(4)	162
03'-H30…02W	0.84	1.95	2.770(8)	164
03′–H30…O2W ^{iv}	0.84	1.99	2.803(8)	161
N1-H1…O22 ^v	0.88	1.81	2.662(4)	161
N6-H61…O21 ^v	0.88	2.07	2.921(5)	163
N6-H62…O22 ^{vi}	0.88	2.00	2.758(5)	143
C4'-H4'…O2' ⁱ	1.00	2.58	3.519(5)	157
C2-H2···O21 ^{viii}	0.95	2.21	3.063(5)	149
C8-H8…O13	0.95	2.25	3.186(5)	168
01W-H1W011 ^{ix}	0.84	1.91	2.709(4)	159
01W-H2W…012 ^x	0.84	1.90	2.725(5)	168
O2W-H4W…O12 ^{xi}	0.84	1.98	2.814(7)	176
O2W-H3W···O3W ^{viii}	0.84	2.08	2.845(8)	151
O2W-H3W…O3W ^{ix}	0.84	2.08	2.845(8)	151
O3W-H5W…O11	0.84	2.36	3.082(3)	145

Table S5 Geometric parameters of the hydrogen bonds for $K(ADP) \cdot 2H_2O(II)$.

-y+1, z; ^(xi) x, y+1, z.

Fig. S10 Coordination polyhedra of potassium ions in $K(ADP) \cdot 2H_2O(II)$. Symmetry codes are given in Table S6.

K1-011	2.919(4)	K1X-011	2.654(4)
K1-012 ⁱ	2.821(5)	K1X-012 ⁱ	3.506(5)
K1-021	3.397(4)	K1X-021	3.068(4)
K1-023	2.789(4)	K1X-023	3.122(4)
K1–O2′ ⁱⁱ	2.881(4)	K1X-02' ⁱⁱ	2.751(4)
K1-N3 ⁱⁱ	3.206(4)	K1X-O3' ⁱⁱⁱ	2.915(5)
K1-03W	3.226(4)	K1X-N3 ⁱⁱ	3.122(4)

Table S6 K–O and K–N bonds lengths [Å] in K(ADP)·2H₂O (II).

Table S7 Geometric parameters of the hydrogen bonds for K(ADP) (III).

D-H…A	<i>D</i> –Н [Å]	H…A [°]	<i>D…A</i> [Å]	D-H…A [°]
O23-H23…N7 ⁱ	0.82	2.01	2.811(11)	167
02′-H2O…012 ^v	0.82	1.91	2.692(10)	158
03′–H30…011 ⁱⁱⁱ	0.82	2.21	2.918(13)	145
N1-H1…O22 ^{vi}	0.86	1.86	2.686(9)	161
N6-H61…O21 ^{vi}	0.86	2.09	2.912(10)	159
N6-H61…O22 ^{vi}	0.86	2.61	3.257(9)	133
N6-H62…O22 ^{vii}	0.86	2.00	2.744(10)	144
C2-H2···O21 ^{viii}	0.93	2.21	3.012(12)	145
C8-H8…O13	0.93	2.25	3.156(11)	165

Symmetry codes: ⁽ⁱ⁾ x, y, z-1; ⁽ⁱⁱⁱ⁾ -x+3/2, -y+1, z-1/2; ^(v) -x+3/2, -y+1, z+1/2; ^(vi) -x+1, y+1/2, -z+5/2; ^(vii) x, y, z+1; ^(viii) x, y+1, z+1.

Fig. S11 Coordination polyhedron of potassium ion in K(ADP) (III). Symmetry codes are given in Table S8.

	, (,-
K1-011 ⁱ	2.798(8)
К1-012	2.694(8)
К1-О21	3.365(8)
К1-023	2.886(7)
K1–O2' ⁱⁱ	2.792(8)
K1-03' ⁱⁱⁱ	3.413(10)
K1-03' ^{iv}	3.525(11)
K1-N3 ⁱⁱ	3.165(8)

Table S8 K–O and K–N bonds lengths [Å] in K(ADP) (III).

Symmetry codes: ⁽ⁱ⁾ *x*, *y*, *z*-1; ⁽ⁱⁱ⁾ *x*, *y*-1, *z*-1; ⁽ⁱⁱⁱ⁾ -*x*+3/2, -*y*+1, *z*-1/2; ^(iv) *x*, *y*-1, *z*.

Fig. S12 Diffraction pattern of $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ at 100 K (top) and 280 K (bottom). Projection of the Ewald sphere along the b^* axis. Visible superstructure reflections (red) in the direction of the c^* axis. Visible reduction in the number of weak reflections with increasing temperature.

Fig. S13 Diffraction pattern of $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ at 300 K without superstructure reflections. Projection of the Ewald sphere along the b^* axis.

D-H…A	<i>D</i> –Н [Å]	H…A [°]	<i>D…A</i> [Å]	<i>D</i> –H…A [°]
O23A-H23A…N7B	0.85(4)	1.88(4)	2.721(3)	173(3)
02'A-H2OA…O1W ^{iv}	0.84	1.92	2.726(4)	160
03'A-H3OA…012B ^v	0.84	1.87	2.708(3)	176
N1A-H1A…O22B ^{vii}	0.81(4)	1.86(4)	2.675(3)	178(3)
N6A-H61A…O21B ^{vii}	0.88	1.97	2.848(3)	172
N6A-H62A···O22B ^{viii}	0.88	1.95	2.763(3)	152
C2′A−H2′A…O4X ^v	1.00	2.46	3.259(17)	136
C2A-H2A···O21B ^{iv}	0.95	2.24	3.170(4)	167
O23B-H23B…N7A ^{III}	0.78(4)	1.93(4)	2.699(3)	169(4)
O2′B-H2OB…O5W ^v	0.84	1.85	2.676(3)	169
O3′B–H3OB…O2′A ^{vi}	0.84	2.06	2.831(3)	153
03′B–H30B…O3′A ^{vi}	0.84	2.26	2.784(3)	120
N1B-H1B…O22A ^{vii}	0.84(4)	1.84(4)	2.670(3)	172(4)
N6B-H61B···O21A ^{vii}	0.88	1.99	2.860(3)	171
N6B-H62B…O22A	0.88	2.00	2.816(3)	155
C1'B-H1'B…O2W ^{ix}	1.00	2.18	3.082(9)	149
C1'B-H1'B····O2X ^{ix}	1.00	2.20	3.04(3)	141
C2B-H2B····O21A ^{ix}	0.95	2.36	3.268(4)	160
C8B-H8B…O13B	0.95	2.57	3.486(4)	163

Table S9 Geometric parameters of the hydrogen bonds for $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVb**).

O1W-H1W…O12A ⁱⁱⁱ	0.84	2.08	2.782(3)	140
O1W-H2W…N3A [×]	0.84	2.37	3.060(3)	140
O2W–H3W…O3′B ⁱ	0.84	2.07	2.867(8)	158
O2W-H4W…O21B	0.84	1.91	2.693(8)	154
O2X–H3X···O3′B ⁱ	0.84	1.83	2.64(3)	161
O2X-H4X…O21B	0.84	2.03	2.75(3)	143
O3W-H5W…O21A	0.84	1.85	2.618(9)	151
O3W–H6W…O2'A ⁱ	0.84	1.83	2.500(10)	136
O4W–H7W…O3′B ^v	0.84	2.40	3.051(6)	135
O4W-H7W…O5W ^{xii}	0.84	2.41	3.121(6)	143
04W-H8W…011A	0.84	2.06	2.814(6)	150
O4X-H7X…O5W ^{xii}	0.84	2.42	3.244(18)	166
O4X-H8X…O11A	0.84	2.30	2.868(18)	125
05W-H9W…01W	0.84	2.00	2.808(4)	162
O5W-H10W…O3′A ^{xi}	0.84	2.23	3.040(3)	163
01Z-H1Z…011A	0.84	1.84	2.673(3)	173
01Z-H2Z…012B	0.84	1.85	2.669(3)	166
02Z-H12Z…01Z	1.01(6)	1.49(6)	2.487(4)	168(6)
02Z–H3Z…O11B ^v	0.84	1.67	2.507(3)	172
O2Z-H4Z····O12A ^{xi}	0.84	1.68	2.520(3)	176

Symmetry codes: ⁽ⁱ⁾ x, y-1, z; ⁽ⁱⁱⁱ⁾ x, y, z-1; ^(iv) x, y+1, z+1; ^(v) -x+3/2, -y+1, z+1/2; ^(vi) -x+3/2, -y+2, z-1/2; ^(vii) -x+1, y+1/2, -z+1/2; ^(viii) x, y, z+1; ^(ix) x, y+1, z; ^(x) x, y-1, z-1; ^(xi) -x+3/2, -y+1, z-1/2

Fig. S14 Location of the disordered Zundel cation oxygen atoms between the bilayers in crystal **IVa**. For clarity, the atoms of one of the positions of the disordered sugar ring (Y) and most of the hydrogen atoms are omitted. Selected hydrogen bonds are marked with black dotted lines. Symmetry codes are given in Table S11.

Fig. S15 Coordination polyhedron of potassium ion in $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVb**). Symmetry codes are given in Table S10.

0 1 1	
K1-011A	3.540(3)
K1-021A	3.373(4)
K1-023A	3.103(3)
К1-О12В	3.308(3)
K1–O2′B ⁱ	2.949(3)
K1–N3B ⁱ	3.077(3)
K1-O2W	2.671(9)
K1-O4W	2.691(5)
Symmetry codes: ⁽ⁱ⁾ x, y–1, z.	

Table S10 K–O and K–N bonds lengths [Å] in $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVb**).

Table S11 Geometric parameters of the hydrogen bonds for $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVa**).

D-H···A	<i>D</i> –H [Å]	H…A [°]	D…A [Å]	<i>D</i> –H…A [°]
023–H23…N7 ⁱ	0.82	1.92	2.720(9)	164
02'-H2O…O3'Y ^{iv}	0.82	2.19	2.94(18)	152
03′–H30…012 ^{vi}	0.82	2.04	2.815(13)	159
N1-H1···O22 ^{viii}	0.86	1.86	2.694(8)	163
N6-H61…O21 ^{viii}	0.86	2.01	2.868(9)	172
N6-H62···O22 ^{ix}	0.86	2.02	2.795(9)	150
C2-H2…O21 ^{vii}	0.93	2.36	3.262(10)	164
02′Y–H2OY…O4W ^v	0.82	1.72	2.43(4)	144
02′Y−H2OY…O5W ^v	0.82	1.91	2.68(4)	158
03'Y–H30Y…02W ^{vii}	0.82	2.17	2.80(3)	133
C1'Y-H1'Y…O2W ^{vii}	0.98	2.23	3.16(3)	157

Fig. S16 Coordination polyhedron of potassium ion in $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVa**). Symmetry codes are given in Table S12.

К1-011	3.225(12)			
K1-O12 ⁱ	3.111(12)			
К1-О21	3.44(12)			
К1-О23	3.087(11)			
K1-O2'Y ⁱⁱ	3.53(19)			
K1-N3 ⁱⁱ	3.178(12)			
K1-O2W	2.81(2)			
K1–O4W	2.71(4)			
Symmetry codes: ⁽ⁱ⁾ x, y, z–1; ⁽ⁱⁱ⁾ x, y–1, z–1.				

Table S12 K–O and K–N bonds lengths [Å] in $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O$ (**IVa**).

Idealized								
shape	HP-7 ^[a]	HPY-7 ^[b]	PBPY-7 ^[c]	C	OC-7 ^[d]	CTPR-7 ^[e]	JPBPY-7 ^[f]	JETPY-7 ^[g]
and	(D _{7h})	(<i>C</i> _{6v})	(D _{5h})		(<i>C</i> _{3v})	(C _{2v})	(D _{5h})	(<i>C</i> _{3v})
symmetry								
			K(A	ADP)∙4H₂	O (I)			
K1	25.317	17.918	7.628		7.823	5.492	9.193	14.940
			K(A	ADP)·2H ₂	0 (II)			
K1	23.025	15.798	12.868		9.094	8.029	15.258	11.426
K1X	31.098	20.394	8.360		4.623	3.154	10.580	17.189
Idealized	JETBPY-			SAPR-		., HBPY-		
shape	8 ^[h]	JGBF-8 ^[1]	TDD-8 ^{IIJ}	8 ^[k]	CU-8 ¹	8 ^[m]	HPY-8 ^[n]	OP-8 ^[0]
and	(D _{3h})	(D _{2d})	(D _{2d})	(D _{4d})	(<i>O</i> _h)	(D _{6h})	(C _{7v})	(D _{8h})
symmetry								
				K(ADP) (I	II)			
K1	23.406	12.655	5.429	7.930	14.34	8 16.059	19.718	26.577
(H ₅ O ₂)K(ADP) ₂ ·4.25H ₂ O (IVa)								
K1	19.401	12.832	9.272	9.578	16.27	1 16.753	16.320	30.287
(H ₅ O ₂)K(ADP) ₂ ·4.25H ₂ O (IVb)								
K1	17.463	11.945	9.440	11.647	18.95	0 18.038	18.537	30.375
Idealized s	shapes:				^[h] JETBPY-8 -	– Johnson elonga	ted triangular b	ipyramid J14
^[a] HP-7 – Heptagon					^[i] JGBF-8 – Johnson gyrobifastigium J26			
^[b] HPY-7 – Hexagonal pyramid				^[]] TDD-8 – Triangular dodecahedron				
^[c] PBPY-7 – Pentagonal bipyramid					^[k] SAPR-8 – Square antiprism			
^[d] COC-7 – Capped octahedron					^[1] CU-8 – Cube			
^[e] CTPR-7 – Capped trigonal prism					^[m] HBPY-8 – Hexagonal bipyramid			
^[f] JPBPY-7 – Johnson pentagonal bipyramid J13					^[n] HPY-8 – H	eptagonal pyram	id	
^[g] JETPY-7 – Johnson elongated triangular pyramid J7				^[o] OP-8 – Octagon				

Table S13 Values of deformation parameters of the analyzed coordination polyhedra from idealized shapes calculated in the *Shape* program for crystals $K(ADP) \cdot 4H_2O(I)$, $K(ADP) \cdot 2H_2O(II)$, K(ADP) (III) and $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O(IVa and IVb)$.

	Six-membered ring		Five-memb	ibered ring		
	lp…centroid [Å]	lp…plane [Å]	lp…centroid [Å]	lp…plane [Å]		
		K(ADP)·4H ₂ O	(I)			
04′ ⁱ	2.947(3)	2.885(3)	-	-		
022 ⁱⁱ	3.473(3)	3.117(3)	3.511(3)	3.118(3)		
023 ⁱⁱ	3.207(3)	3.048(3)	-	-		
		K(ADP)·2H ₂ O	(II)			
O4′ ⁱⁱⁱ	2.864(3)	2.826(3)	-	-		
O22 ^{iv}	3.422(3)	3.174(3)	3.541(3)	3.142(3)		
O23 ^{iv}	3.378(3)	3.133(3)	-	-		
		K(ADP) (III)				
04′ ⁱⁱⁱ	2.950(6)	2.896(5)	-	-		
022 ^v	3.499(6)	3.310(6)	3.718(6)	3.299(6)		
023 ^v	3.475(8)	3.188(7)	-	-		
		(H ₅ O ₂)K(ADP) ₂ ·4.25H	H ₂ O (IVa)			
04′ ⁱⁱⁱ	3.014(7)	2.878(8)	-	-		
O4′Y ⁱⁱⁱ	3.161(8)	3.029(8)	-	-		
O22 ^{iv}	3.612(5)	3.115(5)	3.553(5)	3.092(5)		
O23 ^{iv}	3.185(5)	3.108(5)	-	-		
		(H ₅ O ₂)K(ADP) ₂ ·4.25H ₂	O (IVb) (A)			
O4′B ⁱⁱⁱ	3.151(2)	2.904(2)	-	-		
O22A ⁱⁱ	3.473(2)	2.945(2)	3.274(2)	2.937(2)		
O23A ⁱⁱ	3.193(2)	3.098(2)	-	-		
		(H ₅ O ₂)K(ADP) ₂ ·4.25H ₂	O (IVb) (B)			
04'A	3.071(2)	2.944(2)	-	-		
O21B ^{vi}	-	-	3.791(2)	3.762(2)		
O22B ^{vi}	3.677(2)	3.020(2)	3.711(2)	2.993(2)		
O23B ^{vi}	3.167(2)	3.115(2)	_	_		

Table S14 Lengths of Ip… π (Ip…centroid and Ip…plane) interactions of oxygen atoms and adenine six- and five-membered rings.

Fig. S17 Hirshfeld surface of the ADP⁻ anion (front and back side) in K(ADP)·4H₂O (I): d_{norm} [from -0.5 (blue) to 0.5 Å (red)] mapped on the surface (top), and 2D fingerprint plots with selected types of contacts and their contribution to the surface area (bottom).

Fig. S18 Hirshfeld surface of the ADP⁻ anion in K(ADP)·2H₂O (II): d_{norm} [from –0.5 (blue) to 0.5 Å (red)] mapped on the surface (top), and 2D fingerprint plots with selected types of contacts and their contribution to the surface area (bottom).

Fig. S19 Hirshfeld surface of the ADP⁻ anion in K(ADP) (III): d_{norm} [from -0.5 (blue) to 0.5 Å (red)] mapped on the surface (top), and 2D fingerprint plots with selected types of contacts and their contribution to the surface area (bottom).

Fig. S20 Hirshfeld surface of the ADP⁻ anion A in low-temperature phase of $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O(IVb)$: d_{norm} [from -0.5 (blue) to 0.5 Å (red)] mapped on the surface (top), and 2D fingerprint plots with selected types of contacts and their contribution to the surface area (bottom).

Fig. S21 Hirshfeld surface of the ADP⁻ anion B in low-temperature phase of $(H_5O_2)K(ADP)_2 \cdot 4.25H_2O(IVb)$: d_{norm} [from -0.5 (blue) to 0.5 Å (red)] mapped on the surface (top), and 2D fingerprint plots with selected types of contacts and their contribution to the surface area (bottom).

Temperature [K]	K(ADP)·2H ₂ O	K(ADP)
100	100.0	0.0
250	100.0	0.0
255	100.0	0.0
260	100.0	0.0
265	100.0	0.0
270	100.0	0.0
275	100.0	0.0
280	100.0	0.0
285	100.0	0.0
290	100.0	0.0
295	100.0	0.0
300	96.5	3.5
305	93.1	6.9
310	91.0	9.0
315	86.4	13.6
320	80.4	19.6
325	72.5	27.5
330	66.1	33.9
335	56.9	43.1
340	47.3	52.7
345	35.2	64.8
350	19.7	80.3
355	8.2	91.8
330	4.1	95.9
330	3.8	96.2
330	0.5	99.5
100*	4.8	95.2

Table S15 Estimated percentage content of $K(ADP) \cdot 2H_2O$ and K(ADP) form in the sample during the dehydration based on series of micro-PXRD measurements.

Fig. S22 The variable temperature micro-powder X-ray diffraction patterns (2θ range 7.5–40.5°) for mixture of I and II (55:45) recorded at 100–330 K. Patterns for which the tetrahydrate phase was the dominant form are marked in green, for dihydrate dominant – in blue and anhydrous phase – in red. Theoretical (calculated) diffraction patterns for II (a) and III (b) are marked in black.

Temperature [K]	K(ADP)∙4H₂O	K(ADP)·2H ₂ O	K(ADP)
100	55.9	44.1	0.00
250	52.2	47.8	0.00
255	50.9	49.1	0.00
260	49.3	50.7	0.00
265	44.8	47.9	7.3
270	39.1	46.8	14.1
275	31.8	46.0	22.2
280	24.0	43.9	32.1
285	15.6	41.8	42.6
290	8.1	40.2	51.7
295	3.6	38.0	58.4
300	1.2	35.3	63.5
305	0.0	30.4	69.6
310	0.0	22.9	77.1
315	0.0	11.4	88.6
320	0.0	5.8	94.2
325	0.0	1.6	98.4
330	0.0	0.1	99.9
100*	0.0	0.0	100.0

Table S16 Estimated percentage content of $K(ADP) \cdot 4H_2O$, $K(ADP) \cdot 2H_2O$ and K(ADP) form in the sample during the dehydration based on series of micro-PXRD measurements.

(*) Based on diffraction pattern of the sample after dehydration after two days.

Fig. S23 Estimated percentage content of $K(ADP) \cdot 4H_2O$ (marked in green), $K(ADP) \cdot 2H_2O$ (marked in blue) and K(ADP) form (marked in red) in the sample during the dehydration based on series of micro-PXRD measurements.

Fig. S24 TGA/DTA curves for II (mass of sample = 5.192 mg).

Fig. S25 TGA/DTA curves for mixture of I and II (mass of sample = 9.712 mg).