Supporting information

Lattice engineering of $\mathrm{AuPd} @$ Pt core-shell icosahedra for highly efficient electrocatalytic ethanol oxidation

Ningkang Qian, \ddagger^{a} Degong Ding, \ddagger^{a} Liang Ji, ${ }^{a}$ Junjie Li, ${ }^{a}$ Hui Zhang*ab and Deren Yang ${ }^{a}$
${ }^{\text {a }}$ State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
E-mail: msezhanghui@zju.edu.cn
${ }^{\mathrm{b}}$ Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China.
\ddagger These authors contributed equally to this work.

The calculation of the layers of Pt in $\mathbf{A u}_{73} \mathbf{P d}_{27} @ \mathbf{P t}, \mathbf{A u}_{66} \mathbf{P d}_{34} @ \mathbf{P t}$ and $\mathbf{P d} @ \mathbf{P t}$ icosahedra.

We define the distance between two opposite planes of $\mathrm{Au}_{73} \mathrm{Pd}_{27}, \mathrm{Au}_{66} \mathrm{Pd}_{34}$ and Pd icosahedra as d. The volume (V) of these icosahedral seeds can be calculated from the formulate: $V=0.631 d^{3}$. We assume that each atom occupies the same space, that is, the proportions of the volume occupied by Au and Pd atoms is equal to the atomic percentage of Au and Pd , respectively. Thus, the densities of $\mathrm{Au}_{73} \mathrm{Pd}_{27}$ and $\mathrm{Au}_{66} \mathrm{Pd}_{34}$ icosahedra can be denoted as $\rho_{\mathrm{Au} 73 \mathrm{Pd} 27}=0.73 \rho_{\mathrm{Au}}+0.27 \rho_{\mathrm{Pd}}$ and $\rho_{\mathrm{Au} 66 \mathrm{Pd} 34}=0.66 \rho_{\mathrm{Au}}+$ $0.34 \rho_{\mathrm{Pd}}$. After epitaxial growth of Pt , the volume $\left(V^{\prime}\right)$ of $\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}, \mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}$ and $\mathrm{Pd} @ \mathrm{Pt}$ icosahedra is $V^{\prime}=0.631 d^{3}$. Considering that the lattice spacing of $\operatorname{Pt}(111)$ planes is 0.2265 nm , the volume $V^{\prime}=0.631(d+0.2265 \times 2 \mathrm{n})^{3}, \mathrm{n}$ is the number of Pt layers $(\mathrm{n}=1,2,3)$. Take $\mathrm{Au}_{7_{3}} \mathrm{Pd}_{27} @ \mathrm{Pt}$ as an example, the weight percentages of Pt can be calculated by the following formulate:

Pt $w t \%=\frac{\left(V^{\prime}-V\right) \rho_{P t}}{V \rho_{A u 73 P d 27}+\left(V^{\prime}-V\right) \rho_{P t}}$

Table S1 The atomic ratios of Au:Pd, weight percentages of Pt determined by ICP-AES and the calculated Pt layers of $\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}, \mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}$ and $\mathrm{Pd} @ \mathrm{Pt}$ icosahedra.

Samples	Atomic ratios of $\mathrm{Au}: \mathbf{P d}$ determined by ICP-AES	Weight percentages of Pt determined by ICP-AES	Weight percentages of Pt calculated from different Pt layers ($\mathrm{n}=1,2$, 3)		Estimated Pt layers
$\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}$	73:27	10.03\%	$\mathrm{n}=1$	6.2\%	1~2
			$\mathrm{n}=2$	11.8\%	
			$\mathrm{n}=3$	16.9\%	
$\mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}$	66:34	8.97\%	$\mathrm{n}=1$	6.3\%	1~2
			$\mathrm{n}=2$	12.0\%	
			$\mathrm{n}=3$	17.3\%	
$\mathrm{Pd} @ \mathrm{Pt}$	1	13.46\%	$\mathrm{n}=1$	11.1\%	1~2
			$\mathrm{n}=2$	20.4\%	
			$\mathrm{n}=3$	28.2\%	

Table S2 The binding energies of Pt 4f of $\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}, \mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}, \mathrm{Pd} @ \mathrm{Pt}$ icosahedra and commercial Pt/C determined by XPS.

Samples	$\mathbf{P t}^{\mathbf{0}} \mathbf{4 f}_{7 / 2}$	$\mathbf{P t}^{\mathbf{0}} \mathbf{4 f}_{5 / 2}$	$\mathbf{P t}^{\mathbf{2 +}} \mathbf{4 f}_{7 / 2}$	$\mathbf{P t}^{\mathbf{2 +}} \mathbf{4 f}_{5 / 2}$
$\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}$	71.64	74.97	72.69	76.02
$\mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}$	71.78	75.11	73.19	76.52
$\mathrm{Pd} @ \mathrm{Pt}$	71.74	75.07	73.29	76.62
Pt / C	71.90	75.23	73.42	76.75

Table S3 The ECSAs of $\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}, \mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}, \mathrm{Pd} @ \mathrm{Pt}$ icosahedra and commercial Pt / C determined by CO stripping measurements.

Samples	ECSA $/ \mathbf{m}^{\mathbf{2}} \mathbf{g}_{\mathbf{P t}}{ }^{\mathbf{1}}$
$\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}$	80.35
$\mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}$	95.00
$\mathrm{Pd} @ \mathrm{Pt}$	141.68
Pt / C	39.93

Fig. S1 (a, c, e) TEM images and (b, d,f) size distributions of $\mathrm{Au}_{73} \mathrm{Pd}_{27}, \mathrm{Au}_{66} \mathrm{Pd}_{34}$ and Pd icosahedra, respectively.

Fig. S2 XRD patterns of $\mathrm{Au}_{73} \mathrm{Pd}_{27}, \mathrm{Au}_{66} \mathrm{Pd}_{34}$ and Pd icosahedra.

Fig. S3 The Au 4f XPS spectra of (a) $\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}$ and (b) $\mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}$ icosahedra.

Fig. S4 The Pd 3d XPS spectra of (a) $\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}$, (b) $\mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}$ and (c) $\mathrm{Pd} @ \mathrm{Pt}$ icosahedra.

Fig. $\mathbf{S 5}$ The CO stripping curves of the catalysts.

Fig. S6 TEM images ($\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}$) before and (b, d, f, h) after I-t tests of $\mathrm{Au}_{73} \mathrm{Pd}_{27} @ \mathrm{Pt}$, $\mathrm{Au}_{66} \mathrm{Pd}_{34} @ \mathrm{Pt}, \mathrm{Pd} @ \mathrm{Pt}$ icosahedra and commercial Pt/C, respectively.

Fig. S7 The in-situ FTIR spectra of Pd@Pt icosahedra.

