Sensitive Luminescent Chemosensing of Fluoride based on Eu-doped Zn-LMOF

in Aqueous Media. Structural and Spectroscopic Studies

Paola Toledo-Jaldín,^{a,d*} Cristian Pinzón-Vanegas,^b Juan Pablo León-Gómez,^b Alien Blanco Flores,^a

Diego Martínez-Otero,^c Iván A. Reyes Domínguez,^d Daniel Canseco-González,^e Luis D. Rosales-

Vázquez,^b María K. Salomón-Flores^b and Alejandro Dorazco-González^{b*}

^a Technological Superior Studies Tianguistenco, Mechanical Engineering, Santiago Tianguistenco 52650, México.

^b Institute of Chemistry, National Autonomous University of Mexico, Mexico City 04510.

^cCentro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Instituto de Química, Universidad Nacional Autónoma de México, Toluca 50200 Estado de México, México.

^d Autonomous University of San Luis Potosi, Institute of Metallurgy, San Luis Potosi 78210, México

^e CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Texcoco de Mora CP 56230

Corresponding authors: <u>helenpao27@hotmail.com</u>, <u>adg@unam.mx</u>

Electronic Supporting Information

- Table S1 Crystal data and structure refinement for Zn-LMOF.
- Table S2 Selected bond distances (Å) and angles (°) around Zn atoms.
- Table S3 Analytical parameters of recent luminescent materials for F⁻ sensing in aqueous media.
- Fig. S1 Emission spectra for Eu_{3-24%}@Zn-LMOF.
- Fig. S2 3D diagram from crystal structure of **Zn-LMOF**.
- Fig. S3 Simulated and experimental powder X-ray diffraction patterns of Zn-LMOF.
- Fig. S4 TGA curve of **Zn-LMOF**.
- Fig. S5 ¹³C ss-CPMAS NMR (spinning rate at 8 kHz) spectrum for **Zn-LMOF**.
- Fig. S6 Solid-state excitation and emission spectra of compound Zn-LMOF.
- Fig. S7 Excitation spectrum of Eu@Zn-LMOF at room temperature by monitoring the Eu(III) ions (616 nm).
- Fig. S8 ATR-FTIR spectra to assess the Eu@Zn-MOF hydrostability.
- Fig. S9 Calibration curves with linear fit at 616 nm (λ_{ex} = 260 nm) of **Eu@Zn-LMOF** dispersed in EtOH–H2O (v/v, 8/2) by adding F⁻ ions with (\Box) and without (**■**) interfering anions (1.0 mM each).
- Fig. S10 IR spectra of as-synthesised Zn-LMOF and, Eu@Zn-LMOF treated with NaF for 12 h.
- Fig. S11 SEM-EDS **Eu@Zn-LMOF** after F^- detection.

General Considerations

Materials and methods

All reagents and reactants were purchased directly by commercial approach and were used without any purification. The raw materials were $Zn(NO_3)_2 \cdot 6H_2O$ (Aldrich, 98%), benzene-1,4-dicarboxylic acid (Aldrich, $\geq 98\%$), EuCl₃·6H₂O (Aldrich, 99.9%), *N*,*N*-dimethylformamide, (99%) methanol (Tecsiquim, 99.8%), ethanol (Tecsiquim, 99.8%), dimethyl formamide (Aldrich, 99.8%), acetonitrile (Tecsiquim, $\geq 99.5\%$), butanol (Tecsiquim, $\geq 99.5\%$), carbon tetrachloride (Tecsiquim, $\geq 99\%$), chloroform (Tecsiquim, 99.7%), dichloromethane (Tecsiquim, $\geq 99.5\%$), THF (Tecsiquim, $\geq 99\%$), DMA (Aldrich, 99.8%), acetone (Tecsiquim, $\geq 99.5\%$). All anions tested were used as sodium salts, chloride (Aldrich, 99.0%), bromide (Fluka 99.9%), iodide, cyanide (Aldrich, 95%), sulfate (Tecsiquim, $\geq 99\%$) pyrophosphate decahydrate (Aldrich, $\geq 99.9\%$), nitrate (Aldrich, $\geq 99\%$), arsenate dibasic heptahydrate (Aldrich, $\geq 98\%$), acetate (Sigma-Aldrich, 99.5%),

The FT-IR spectrum was recorded in the range of 4000–600 cm⁻¹ by using the standard Pike ATR cell on a Bruker Tensor 27 FT-IR spectrophotometer (Bruker Optik GmbH, Ettlingen, Germany).

Elemental analysis for C, H, and N were carried out by standard methods using a Vario Micro-Cube analyzer.

Powder X-ray diffraction (PXRD) was conducted using a Bruker D8 ADVANCE X-ray powder diffractometer (Cu-K α , λ = 1.5418 Å) (Bruker AXS GmbH, Karlsruhe, Germany) with the 2 θ range of 5–50 \circ . Thermogravimetric analyses were performed using a Netzsch model STA 449 F3 Jupiter equipment, under a dinitrogen atmosphere, at a heating rate of 10 °C min⁻¹, and from 25 to 450 °C. SEM-EDS. Morphological changes of **Zn-LMOF** and **Eu@Zn-LMOF** before and after the contact with fluoride solutions were evaluated by Scanning Electron Microscopy (SEM) on a JEOL (JSM-6610) microscope. For sample preparation, the specimen was dried and fixed on a stub with carbon double-stick tape and then coated with gold for 90 seconds under vacuum using a Denton IV sputtering chamber. Elemental chemical distribution analysis was performed with an energy-dispersive X-ray spectroscope QUANTAX 200 from Bruker attached to SEM.

Elemental analyses were recorded on Thermo Scientific/Flash 2000 elemental analyzer. Luminescence spectra were recorded on a Varian Cary Eclipse spectrophotometer equipped with a thermostated cell holder. UV-Vis spectra were recorded on an Agilent Cary 100 UV-VIS spectrophotometer.

Ball milling for the preparation of the **Eu@Zn-LMOF** was performed using a Planetary Micro Mill PulverisetteTM 7 Fritsch device (Idar-Oberstein, Germany)

Table S1. Crystal data and structure refinement for Zn-LMOF.

	1		
Empirical formula	$C_{29,20}H_{27,60}O_{14,60}Zn_3$		
Formula weight	808.22		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	$a = 20.1166(14) \text{ Å}, \alpha = 90^{\circ}.$		
	b = 10.6178(7) Å, β = 108.3899(12)°.		
	$c = 16.0756(11)$ Å, $\gamma = 90^{\circ}$.		
Volume	3258.3(4) Å ³		
Z	4		
Density (calculated)	1.648 Mg/m ³		
Absorption coefficient	2.260 mm ⁻¹		
F(000)	1638		
Crystal size	0.280 x 0.149 x 0.096 mm ³		
Theta range for data collection	2.134 to 27.443°.		
Index ranges	-26<=h<=26, -13<=k<=13, -20<=l<=20		
Reflections collected	34640		
Independent reflections	3718 [R(int) = 0.0316]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3718 / 361 / 326		
Goodness-of-fit on F^2	1.068		
Final R indices [I>2sigma(I)]	R1 = 0.0456, $wR2 = 0.1230$		
R indices (all data)	R1 = 0.0488, wR2 = 0.1257		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.473 and -0.757 e.Å ⁻³		

Table S2. Selected bond distances (Å) and angles (°) around Zn atoms.

Bonding	Distance (Å)	Bonding	Angle (°)
Zn(1)-O(5)	1.855(9)	O(5)-Zn(1)-O(1)	121.3(3)
Zn(1)-O(6A)	1.940(13)	O(5)-Zn(1)-O(4)	125.6(3)
Zn(1)-O(1)	1.945(2)	O(9A)-Zn(1)-O(4)	105.2(4)
Zn(1)-O(4)#1	1.962(2)	O(1)-Zn(1)-O(4)	108.82(12)
Zn(1)-O(6)	2.063(6)	O(5)-Zn(1)-O(9)	98.8(3)
Zn(1)-H(6)	1.97(8)	O(1)-Zn(1)-O(9)	91.45(18)
Zn(1)-H(6A)	2.10(3)	O(4)-Zn(1)-O(9)	99.8(2)
Zn(2)-O(2)	2.078(2)	O(2)-Zn(2)-O(2)	180.0
Zn(2)-O(3)	2.090(3)	O(2)-Zn(2)-O(3)	91.62(12)
		O(3)-Zn(2)-O(3)	180.00(11)

Table S3. Analytical parameters of recent luminescent materials for F⁻ sensing in aqueous dispersions.

Material	Stern-Volmer constant (M ⁻¹)	LOD (mol/L)	λ _{em} (nm)	Ref.
*Eu-MOF	-	1.14×10^{-6}	425	[1]
FS@UiO-66	-	4.40x10 ⁻⁴	537	[2]
[Cu ₄ I(TIPE) ₃]·3I	-	2.11x10 ⁻⁶	450	[3]
TMU-31	2.53×10^3	-	375	[4]
**Eu-MOF	-	8.30x10 ⁻⁵	625	[5]
Eu@Zn-LMOF	7.27x10 ³	1.37x10 ⁻⁵	616	This work

*Eu-MOF (L= 2-aminoterephthalic acid); FS@UiO-66 (FS=Fluorescein; UiO-66 =MOF-5); TIPE = tetra(3-imidazoylphenyl) ethylene; TMU-31 (L=4,4'-(carbonylbis(azanediyl)dibenzoic acid); **Eu-MOF (L= 5-boronisophthalic acid)

[1] H. Che, Y. Li, S. Zhang, W. Chen, X. Tian, C. Yang, L. Lu, Z. Zhou and Y. Nie, Sens. Act. B Chem., 2020, 324, 128641.

[2] X. Zhao, Y. Wang, X. Hao and W. Liu, Appl. Surf. Sci., 2017, 402, 129-135.

[3] H. Chen, P. X. Liu, S. P. Zhuo, X. Meng, Z. Y. Zhou and H. N. Wang, *Inorg. Chem. Commun.*, 2016, 63, 69-73.
[4] M. Sharafizadeh, J. Mokhtari, H. Saeidian and Z. Mirjafary, *Environ. Sci. Pollut. Res. Int.*, 2020, 27, 25132-25139.

[5] Z. R. Yang, M. M. Wang, X. S. Wang and X. B. Yin, Anal. Chem., 2017, 89, 1930-1936.

Fig. S1. Emission spectra for Eu_{3-24%}@Zn-LMOF (λ_{ex} = 260 nm).

Fig. S2. The 3D diagram from crystal structure of Zn-LMOF.

Fig. S3. Simulated and experimental powder X-ray diffraction patterns of Zn-LMOF.

Fig. S4. TGA curve of Zn-LMOF

Fig. S5. ¹³C ss-CPMAS NMR (spinning rate at 8 kHz) spectrum for **Zn-LMOF** and the asymmetric unit from the crystal structure (above). Solvent molecules are omitted for clarity.

Fig. S6. Solid-state excitation (black) and emission (blue) spectra of Zn-LMOF at room temperature.

Fig. S7. Excitation spectrum of **Eu@Zn-LMOF** at room temperature by monitoring the Eu(III) ions (λ_{em} = 616 nm).

Fig. S8. ATR-FTIR spectra to assess the Eu@Zn-MOF hydrostability.

Fig. S9. Calibration curves with linear fit at 616 nm (λ_{ex} = 260 nm) of **Eu@Zn-LMOF** dispersed in EtOH-H₂O (v/v, 8/2) by adding F⁻ ions with (\circ) and without (\bullet) interfering anions (Cl⁻, Br⁻, I⁻, NO₃⁻, AcO⁻, H₂PO₄⁻, H₃P₂O₇⁻, and SO₄²⁻; [X⁻]= 1.0 mM each one).

Fig. S10. IR spectra of as-synthesised Zn-LMOF and, Eu@Zn-LMOF treated with NaF for 12 h.

, (-				
		R	The second	Element	Weight%	Atomic%
	S. A.		Cherry P	CK	24.65	43.50
12 -	1			OK	9.92	13.14
111	1/1 Y			FK	29.01	32.37
and the second s	N.St			ZnL	31.96	10.37
	1			Eu L	4.47	0.62
SEI 15kV WD10mm MOF-F	SS50	x3,000	5µm	Totals	100.00	

Fig. S11 SEM-EDS Eu@Zn-LMOF after F⁻ detection.