Electronic Supplementary Information

Dielectric and optical properties of an organic-inorganic

hybrid phase transition material

Yinan Zhang ^{a,1}, Zhuoer Cai ^{a,1}, Xinyi Zhang ^a, Shiyue Xiao ^a, Xianmin Liu^a, Yingyi Zhao^a, Xiu-Ni Hua ^{b,} * and Baiwang Sun ^a

^aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
^bSchool of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.

Contents:

Fig. S1 Infrared spectrum of compound 1 at room temperature.

Fig. S2 PXRD patterns (observed and simulated) of compound 1.

Table S1 Basic crystal structure information of compound 1 at 150 K and 340 K.

 Table S2 Bond lengths (Å) for salt compound 1 at 150 K.

Table S3 Selected angles [°] for compound 1 at 150 K.

Table S4 Bond lengths (Å) for compound 1 at 340 K.

 Table S5 Selected angles [°] for compound 1 at 340 K.

Table S6 Some dielectric abrupt with step-type and λ -type were collected.

Fig. S1 Infrared spectrum of compound 1 at room temperature.

Fig. S2 PXRD patterns (measurement and simulated) of compound 1.

Temperature	150K	340K
Empirical formula	$C_{28}H_{68}Cl_{12}Mn_2N_4$	$C_{14}H_{34}Cl_6MnN_2$
Formula weight	497.58	498.07
Temperature/K	150.0	340.00
Crystal system	triclinic	tetragonal
Space group	P1 (2)	$P4_2/nmc(137)$
a/Å	12.9520(9)	9.2031(9)
b/Å	13.4792(10)	9.2031(9)
c/Å	15.8481(12)	14.662(2)
$\alpha / ^{\circ}$	110.169(2)	90
β/°	113.276(2)	90
$\gamma^{ m o}$	90.899(3)	90
Volume / Å3	2348.4(3)	1241.8(3)
Z	4	2
ρ_{calc} g/cm3	1.407	1.332
F(000)	1034	518
R _{int}	0.0641	0.0433
Goof	1.052	1.400
R_1 [I>2 sigma(I)]	0.0780	0.0898
wR ₂ [I>2 sigma(I)]	0.1954	0.3186

Table S1 Basic crystal structure information of compound 1 at 150 K and 340 K.

	•					
Table S2 Bond lengths	(Å)) for com	pound 1	at	150	Κ

Table S2 Bond lengths (Å) for compound 1 at 150 K.					
Atom-Atom	Length(Å)	Atom-Atom	Length(Å)		
Mn1–Cl3	2.3540(16)	C4–H4AA	0.9900		
Mn1–Cl5	2.3654(16)	C4–H4AB	0.9900		
Mn1–Cl6	2.3451(16)	C4–H4BC	0.9900		
Mn1–Cl7	2.3651(17)	C4–H4BD	0.9900		
Mn2–Cl4	2.3728(17)	C4-C30A	1.505(13)		
Mn2–Cl8	2.3862(18)	C20–H20A	0.9800		
Mn2–Cl9	2.3706(18)	C20–H20B	0.9800		
Mn2–C112	2.353(2)	С20–Н20С	0.9800		
Cl10–C7	1.761(6)	C18–H18A	0.9800		
Cl11–C10	1.738(6)	C18–H18B	0.9800		
Cl13–C14	1.733(7)	C18–H18C	0.9800		
C29–H29A	0.9800	C7–H7A	0.9900		
C29–H29B	0.9800	C7–H7B	0.9900		
С29–Н29С	0.9800	C1–H1A	0.9900		
C29–C3	1.482(13)	C1–H1B	0.9900		
Cl15–C4	1.738(8)	C1–C28	1.553(8)		
N5-C6	1.512(7)	C19–H19A	0.9800		
N5–C8	1.533(7)	C19–H19B	0.9800		
N5–C5	1.527(7)	С19–Н19С	0.9800		
N5-C7	1.504(7)	C25–H25A	0.9800		

N2-C9	1.530(7)	C25–H25B	0.9800
N2-C10	1.512(7)	С25–Н25С	0.9800
N2-C11	1.527(7)	C25–C15	1.560(9)
N2-C12	1.516(7)	C28–H28A	0.9800
N1C4	1.521(7)	C28–H28B	0.9800
N1C1	1.517(7)	C28–H28C	0.9800
N1-C2	1.516(7)	C24–H24A	0.9800
N1–C3	1.517(8)	C24–H24B	0.9800
N3-C15	1.520(8)	C24–H24C	0.9800
N3-C14	1.555(9)	C24–C16	1.589(9)
N3-C16	1.496(8)	C23–H23A	0.9800
N3-C13	1.495(8)	C23–H23B	0.9800
С9–Н9А	0.9900	С23–Н23С	0.9800
C9–H9B	0.9900	C23–C13	1.603(10)
C9–C22	1.540(8)	C12–H12A	0.9900
C21–H21A	0.9800	C12–H12B	0.9900
C21–H21B	0.9800	C2–H2A	0.9900
C21–H21C	0.9800	C2–H2B	0.9900
C21–C12	1.628(8)	C2–C26	1.502(9)
C17–H17A	0.9800	C15–H15A	0.9900
C17–H17B	0.9800	C15–H15B	0.9900
C17–H17C	0.9800	C26–H26A	0.9800
C17–C8	1.521(8)	C26–H26B	0.9800
C10–H10A	0.9900	C26–H26C	0.9800
C10–H10B	0.9900	C3–H3BC	0.9900
C6–H6A	0.9900	C3–H3BD	0.9900
C6–H6B	0.9900	С3–НЗАА	0.9900
C6–C18	1.516(9)	C3–H3AB	0.9900
C11–H11A	0.9900	C3–C114	1.777(8)
C11–H11B	0.9900	C14–H14A	0.9900
C11–C20	1.588(8)	C14–H14B	0.9900
C8–H8A	0.9900	C16–H16A	0.9900
C8–H8B	0.9900	C16–H16B	0.9900
C5–H5A	0.9900	C13–H13A	0.9900
C5–H5B	0.9900	C13–H13B	0.9900
C5–C19	1.540(9)	C30A-H30A	0.9800
C22–H22A	0.9800	C30A-H30B	0.9800
C22–H22B	0.9800	C30A-H30C	0.9800
C22–H22C	0.9800		

at	150 K
	at

Table S3 Selected angl	les [°] for compou	nd 1 at 150 K.	
Atom1-to-Atom2-to	A malo[9]	Atom1-to-Atom2-to	A malo [9]
Atom3	Angle	Atom3	Angle
Cl3-Mn1-Cl5	111.47(8)	H20A-C20-H20B	109.5

Cl3-Mn1-Cl7	108.22(8)	H20A-C20-H20C	109.5
Cl5-Mn1-Cl7	111.72(8)	H20B-C20-H20C	109.5
Cl6-Mn1-Cl3	106.36(8)	C6-C18-H18A	109.5
Cl6-Mn1-Cl5	109.81(8)	C6-C18-H18B	109.5
Cl6-Mn1-Cl7	109.09(8)	C6-C18-H18C	109.5
Cl4–Mn2–Cl8	102.65(8)	H18A-C18-H18B	109.5
Cl9-Mn2-Cl4	114.57(8)	H18A-C18-H18C	109.5
C19-Mn2-C18	109.10(8)	H18B-C18-H18C	109.5
Cl12-Mn2-Cl4	107.73(9)	Cl10-C7-H7A	108.9
Cl12-Mn2-Cl8	115.03(10)	Cl10-C7-H7B	108.9
Cl12-Mn2-Cl9	107.90(10)	N5-C7-C110	113.2(5)
H29A-C29-H29B	109.5	N5-C7-H7A	108.9
H29A-C29-H29C	109.5	N5C7H7B	108.9
H29B-C29-H29C	109.5	H7A-C7-H7B	107.7
С3-С29-Н29А	109.5	N1–C1–H1A	108.0
С3-С29-Н29В	109.5	N1–C1–H1B	108.0
С3-С29-Н29С	109.5	N1-C1-C28	117.3(7)
C6–N5–C8	112.7(6)	H1A-C1-H1B	107.2
C6-N5-C5	109.2(6)	C28C1H1A	108.0
C8–N5–C5	108.4(6)	C28-C1-H1B	108.0
C7-N5-C6	108.7(6)	С5-С19-Н19А	109.5
C7–N5–C8	106.3(5)	C5-C19-H19B	109.5
C7–N5–C5	111.6(6)	С5-С19-Н19С	109.5
C9-N2-C11	109.2(6)	H19A-C19-H19B	109.5
C10-N2-C9	112.4(6)	H19A-C19-H19C	109.5
C10-N2-C11	107.5(6)	H19B-C19-H19C	109.5
C10-N2-C12	107.2(6)	H25A-C25-H25B	109.5
C12-N2-C9	108.6(6)	H25A-C25-H25C	109.5
C12-N2-C11	111.9(6)	H25B-C25-H25C	109.5
C4-N1-C3	108.7(6)	C15-C25-H25A	109.5
C1-N1-C4	112.4(6)	C15-C25-H25B	109.5
C1-N1-C2	109.1(6)	С15-С25-Н25С	109.5
C1-N1-C3	108.1(6)	C1-C28-H28A	109.5
C2-N1-C4	107.7(6)	C1C28H28B	109.5
C2-N1-C3	110.9(6)	C1C28H28C	109.5
C15-N3-C14	103.7(6)	H28A-C28-H28B	109.5
C16-N3-C15	110.8(7)	H28A-C28-H28C	109.5
C16-N3-C14	110.3(6)	H28B-C28-H28C	109.5
C16-N3-C13	110.5(7)	H24A-C24-H24B	109.5
C13-N3-C15	112.6(6)	H24A-C24-H24C	109.5
C13-N3-C14	108.8(6)	H24B-C24-H24C	109.5
N2C9H9A	108.3	C16-C24-H24A	109.5
N2C9H9B	108.3	C16-C24-H24B	109.5
N2-C9-C22	115.8(6)	C16-C24-H24C	109.5

Atom-Atom	Length(Å)	Atom-Atom	Length(Å)		
Mn1-Cl1#1	2.328(2)	C2–H2A	0.9600		
Mn1-Cl1#2	2.328(2)	C2–H2B	0.9600		
Mn1-C11#3	2.328(2)	C2–H2C	0.9600		
Mn1–Cl1	2.328(2)	С3–НЗА	0.9700		
N1C1	1.475(10)	C3–H3B	0.9700		
N1–C3	1.476(12)	C7–H7A	0.9700		
N1-C7	1.457(11)	C7–H7B	0.9700		
N1-C5	1.471(12)	C7–C12	1.715(16)		
C1–H1A	0.9700	C5–H5A	0.9700		
C1–H1B	0.9700	C5–H5B	0.9700		
C1–C2	1.556(10)	C5–C6	1.543(10)		
C4–H4A	0.9600	С6–Н6А	0.9600		
C4–H4B	0.9600	C6–H6B	0.9600		
C4–H4C	0.9600	С6-Н6С	0.9600		
C4–C3	1.559(10)				

Table S4 Bond lengths (Å) for compound 1 at 340 K.

109.5

Table S5 Selected angles [°] for compound 1 at 340 K.

Atom1-to-Atom2-to	A	Atom1-to-Atom2-to	A 1 . [0]
Atom3	Angle	Atom3	Angle
Cl1-Mn1-Cl1	109.04(8)	H2A–C2–H2B	109.5
Cl1-Mn1-Cl1	109.04(8)	H2A-C2-H2C	109.5
Cl1-Mn1-Cl1	110.34(16)	H2B-C2-H2C	109.5
Cl1-Mn1-Cl1	110.34(16)	N1-C3-C4	126.1(19)
Cl1-Mn1-Cl1	109.04(8)	N1-C3-H3A	105.8
Cl1-Mn1-Cl1	109.04(8)	N1-C3-H3B	105.8
C1-N1-C3	107.4(13)	С4-С3-НЗА	105.8
C7-N1-C1	111.6(16)	С4-С3-Н3В	105.8
C7–N1–C3	109.4(15)	НЗА-СЗ-НЗВ	106.2
C7–N1–C5	117.4(15)	N1-C7-H7A	107.9
C5-N1-C1	112.1(14)	N1-C7-H7B	107.9
C5–N1–C3	97.6(15)	N1-C7-Cl2	117.7(15)
N1-C1-H1A	108.5	H7A-C7-H7B	107.2
N1C1H1B	108.5	Cl2C7H7A	107.9
N1C1C2	114.9(18)	Cl2C7H7B	107.9
H1AC1H1B	107.5	N1-C5-H5A	104.0
C2C1H1A	108.5	N1-C5-H5B	104.1
C2C1H1B	108.5	N1-C5-C6	132.7(17)
H4A–C4–H4B	109.5	H5A-C5-H5B	105.5
H4AC4H4C	109.5	C6-C5-H5A	104.1
H4BC4H4C	109.5	C6-C5-H5B	104.0

C3–C4–H4A	109.5	С5-С6-Н6А	109.5	
C3–C4–H4B	109.5	С5-С6-Н6В	109.5	
C3–C4–H4C	109.5	С5-С6-Н6С	109.5	
C1C2H2A	109.5	H6A-C6-H6B	109.5	
C1C2H2B	109.5	H6A-C6-H6C	109.5	
C1C2H2C	109.5	H6B-C6-H6C	109.5	

Table S6 Some dielectric abrupt with step-type and λ -type were collected.

Material	T _c	ε'(LP)	<i>ε</i> '(НР)	Туре	Reference	
$(DPA)_5Pb_2Br_9$	300.6 K	10.5	13	step-type	36	
(DPA) ₄ AgBiBr ₈	375 K	10.6	11.7	step-type	36	
(TEACCl)PbBr3	390 K	11.2	15.3	step-type	29	
NH ₃ (CH ₂) ₅ NH ₃ MnCl ₄	298 K	5.5	10.25	step-type	31	
	401.2 K,	6.5	10.1	step-type	4	
$[N(CH_2CH_3)_3(CH_2CI)][CIO_4]$	455.2K					
(MTDA) D; D ₇	188 K,	4.6	4.8	stan trina	10	
(WIIDA)3DI2DI9	425 K	7.5	11	step-type	10	
[(CH ₃) ₂ (F-CH ₂ CH ₂)NH] ₃ (CdCl ₃)(CdCl ₄)	333 K	10	80	λ-type	16	
[Methylhydrozinium] PhPr	370 K	Nearly	750) type	23	
	370 K	90	/30	л-туре	23	