Supporting Information

Formation of One-dimensional Hierarchical MoO₂@C-Ni/CoNi hybrids as highly efficient catalysts and protein adsorbents

Songbo Xie,^a Yang Xiao,^b Na Lu,^{*b} Min Zhang^{*a}

^a College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China. E-mail: zhangmin@sues.edu.cn

^b College of Materials Science and Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China. Email: nlu2014@163.com.

Synthesis of hierarchical Ni-CoMoO₄

618 mg of nickel acetate and a certain amount of cobalt chloride hexahydrate were dispersed in a mix solution of 20 mL ethanol and 20 mL water. Then, 75 mg as-prepared MoO₃ was added. Finally, the mixture above was transferred into a three-necked round bottom flask under stirring at 90 °C for 5 h. After it cooled to room temperature naturally, the precipitates were separated by centrifugation, washed with distilled water and absolute ethanol, and dried in air. The mass ratios of nickel and cobalt ions are 8:1, 8:2, 8:4 and 8:8, respectively. As mentioned above, the obtained samples, with different mass rations of nickel ions and cobalt ions, are named Ni-CoMoO₄-1, Ni-CoMoO₄-2, Ni-CoMoO₄-4 and Ni-CoMoO₄-8, respectively.

Synthesis of hierarchical Ni-CoMoO₄@PDA-Ni²⁺

An extended Stöber method was applied to coat the PDA-Ni²⁺ outer layer on the surface of Ni-CoMoO₄. Specifically, 50 mg of as-prepared Ni-CoMoO₄ was dispersed in a liquid of 25 mL of ethanol and 15 mL of deionized water and 1 mL of 30% ammonia solution, followed by the addition of dopamine (15 mg) and NiCl₂·6H₂O (37.6 mg). After stirring for 24 h at room temperature. the products of NiMoO₄@PDA-Ni²⁺ were collected and washed three times with distilled water and ethanol, and dried at 60 °C for 12 h.

Synthesis of hierarchical MoO₂@C-CoNi

The as-prepared NiMoO₄@PDA-Ni²⁺ powder were burned in a tube furnace under

an N₂ atmosphere at 500 °C for 5 h, the obtained black powder was MoO₂@C-CoNi.

Figure S1. XRD pattern of (A)MoO₃, NiMoO₄ (B-a) and NiMoO₄@PDA-Ni²⁺ (B-b).

Figure S2. SEM images of Ni-CoMoO₄-1(a, b), Ni-CoMoO₄-2(c, d), Ni-CoMoO₄-4(e, f) andNi-

Figure S3. XRD pattern of MoO₂@C-CoNi-1.

Figure S4. The XPS spectrum of MoO₂@C-CoNi-1.

Figure S5. The recyclability of the $MoO_2@C-Ni$ as the catalyst for 4-NP.

Figure S6. SEM images of MoO₂@C-Ni after five catalysis.

Figure S7. UV/Vis absorption spectra of the reaction mixture in the reduction of p-nitrophenol (0.1 mM) by NaBH₄ in the presence of $MoO_2@C-CoNi-1$ (1 mg).

Figure S8. Linear fitting of adsorption isotherms plots based on Freundlich model.

Table S1 the estimate of Langmuir model and Freundlich model					
Langmuir			Freundlich		
Q _m	K _d	R ²	K _F	n	R ²
1489.96	0.0536	0.99211	43.69	1.45	0.96902