Supporting Information

A high-temperature hybrid bimetal nitrite perovskite ferroelectric: [(R)-3-quinuclidinol]₂[LiCo(NO₂)₆]

Zhi-Yuan Yue†, Rong-Meng Liao†, Wang Luo, Na Wang, Le-Ping Miao*, Heng-Yun Ye and Chao Shi*

Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.

Corresponding authors:

*<u>15150517670@163.com</u>

Figure. S1 PXRD patterns of 1 297 K.

Figure. S2 The thermogravimetric analysis of 1.

Figure. S3 Infrared (IR) spectra for 1.

1_297 K	1_350 K	
C ₁₄ H ₂₈ CoLiN ₈ O ₁₄		
	596.30	
monoclinic	trigonal	
<i>C</i> 2	P321	
17.0535(6)	9.9786(3)	
10.0663(4)	9.9786(3)	
6.9926(2)	7.0265(3)	
90	90	
91.543(3)	90	
90	120	
1199.95(7)	605.91(4)	
2	1	
1.650	1.530	
0.800	0.780	
620.0	276.0	
Μο Κα (λ=0.71073)		
4.7-61.764	4.714-62.03	
7378	9310	
3795 (0.043)	1285 (0.0564)	
174	59	
1.073	2.313	
0.0972, 0.2772	0.1063, 0.2911	
0.1029, 0.2864	0.1146, 0.2937	
1.63, -0.76	1.04, -0.63	
0.72 (6)	0.44 (11)	
	$\frac{1_{297 \text{ K}}}{\text{C}_{14}\text{H}_{24}}$ monoclinic <i>C</i> 2 17.0535(6) 10.0663(4) 6.9926(2) 90 91.543(3) 90 1199.95(7) 2 1.650 0.800 620.0 Mo Kα (λ 4.7-61.764 7378 3795 (0.043) 174 1.073 0.0972, 0.2772 0.1029, 0.2864 1.63, -0.76 0.72 (6)	

Table S1 Crystal Data and Structure Refinement Details for 1 at 297 K and 350 K.

^[a] $R_1 = \Sigma ||F_o| - |F_c||/|F_o|$; ^[b] $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2] / \Sigma w (F_o^2)^2]^{1/2}$; ^[c] maximum and minimum residual electron density.

297 K			350 K		
Co1-N2 ¹	1.965(6)	Co1–N1	1.943(6)		
Co1-N2	1.965(6)	Co1–N1 ¹	1.943(6)		
Co1-N4	1.964(10)	Co1-N1 ²	1.943(6)		
Co1-N4 ¹	1.964(10)	Co1–N1 ³	1.943(6)		
Co1-N3	1.937(12)	Co1–N1 ⁴	1.943(6)		
Co1-N31	1.938(12)	Co1-N1 ⁵	1.943(6)		
O7–C5	1.431(3)	O3-N1	1.217(8)		
O6-Li1	2.07(3)	O3–Li1	2.042(5)		

Table S2 Selected bond lengths [Å] for 1 at 297 K and 350 K.

N2-O1	1.225(8)	N1-O1	1.273(16)	
N2-O2	1.227(11)	N1-O2	1.48(3)	
N4-O3	1.200(12)	O1–O2	1.20(3)	
N4-O4	1.221(10)	C2-C1	1.554(2)	
O1–Li1 ²	2.064(6)	C2-O4	1.4349(16)	
Li1-O4	1.97(2)	C2–C3	1.515(3)	
Li1-04 ³	1.97(2)	C1-N2	1.509(3)	
Symmetry codes: ¹ 1–X, +Y,1–Z; ² +X, +Y, -1+Z; ³ 1–X, +Y, 2–Z		Symmetry codes: $^{1}+Y-X$, $-X$, $+Z$; $^{2}-X$,		
		$-X+Y$, $1-Z$; $^{3}-Y$, $+X-Y$, $+Z$; $^{4}+Y$,		
		+X,1–Z; ⁵ –Y+X, –Y, 1–Z		

Table S3 Selected bond angles [°] for 1 at 297 K.

1_297 K					
N2-Co1-N2 ¹	176.7(11)	O6 ³ -Li1-O6	89.5(15)		
N4 ¹ -Co1-N2	91.2(6)	O14-Li1-O63	87.5(8)		
N4-Co1-N2	86.4(5)	O11-Li1-O6	87.5(8)		
N4 ¹ -Co1-N2 ¹	86.3(5)	O14-Li1-O6	89.4(8)		
N4-Co1-N21	91.2(6)	O11-Li1-O63	89.4(8)		
N4 ¹ -Co1-N4	86.3(7)	O11-Li1-O14	176(2)		
N3-Co1-N2	87.0(6)	O4-Li1-O6 ³	178.2(11)		
N3-Co1-N21	95.4(6)	O43-Li1-O63	89.1(3)		
N3 ¹ -Co1-N2 ¹	87.0(6)	O4-Li1-O6	89.1(3)		
N3 ¹ -Co1-N2	95.4(6)	O4 ³ -Li1-O6	178.2(11		
N31-Co1-N41	92.6(4)	O4-Li1-O11	89.4(8)		
N3-Co1-N41	178.0(8)	O4-Li1-O1 ⁴	93.7(7)		
N3 ¹ -Co1-N4	178.0(8)	O4 ³ -Li1-O1 ⁴	89.4(8)		
N3-Co1-N4	92.6(4)	O43-Li1-O11	93.7(7)		
N3-Co1-N31	88.4(9)	O4 ³ -Li1-O4	92.4(15)		
C6-C4-C1	110.3(13)	N4-O4-Li1	127.2(10)		
N1-C1-C4	108.3(13)	C1-N1-C3	105.4(13)		
N3-O6-Li ¹	125.6(12)	C2-N1-C1	113.4(13)		
O1-N2-Co1	123.3(5)	C2-N1-C3	97.5(12)		
O1-N2-O2	116.1(8)	С5-С6-С4	110.7(13)		
O2-N2-Co ¹	118.1(6)	С7-С6-С4	97.7(14)		
O3-N4-Co1	115.8(8)	C7-C6-C5	116.4(13)		
O3-N4-O4	119.7(11)	N1-C2-C7	113.8(13)		
O4-N4-Co1	123.5(9)	O7-C5-C6	104.0(10)		
O6-N3-Co1	122.7(10)	O7-C5-C3	113.2(14)		
O5-N3-Co1	121.4(10)	C6-C5-C3	105.0(12)		

O5-N3-O6	115.0(13)	N1-C3-C5	114.9(13)		
N2-O1-Li1 ²	125.0(5)	C6-C7-C2	108.5(14)		
Symmetry codes: ¹ 1–X, +Y, 1–Z; ² +X, +Y, –1+Z; ³ 1–X, +Y, 2–Z; ⁴ +X, +Y, 1+Z					

Table S4 Selected bond angles [°] for 1 and 350 K.

1_350 K					
N1-Co1-N1 ¹	174.0(12)	O2-O1-N1	73.4(19)		
N1 ² -Co1-N1 ³	92.7(10)	O35-Li1-O3	87.60(19)		
N1-Co1-N1 ³	84.1(9)	O35-Li1-O36	88.4(6)		
N14-Co1-N13	91.8(2)	O3 ² -Li1-O3	87.60(19)		
N1 ⁴ -Co1-N1 ²	174.0(12)	O3 ² -Li1-O3 ⁶	96.7(6)		
N1 ² -Co1-N1 ⁵	91.8(2)	O3 ⁵ -Li1-O3 ⁷	174.0(8)		
N1-Co1-N1 ²	91.8(2)	O36-Li1-O3	174.0(8)		
N1-Co1-N1 ⁴	92.7(10)	O3 ⁸ -Li1-O3 ²	174.0(8)		
N1 ¹ -Co1-N1 ²	84.1(9)	O38-Li1-O36	87.60(19)		
N1 ¹ -Co1-N1 ⁵	92.7(10)	O3 ⁸ -Li1-O3 ⁷	87.60(19)		
N1 ³ -Co1-N1 ⁵	174.0(12)	O36-Li1-O37	87.59(19)		
N1 ¹ -Co1-N1 ⁴	91.8(2)	O3 ⁸ -Li1-O3 ⁵	96.7(6)		
N1-Co1-N1 ⁵	91.8(2)	O3 ⁸ –Li1–O3	88.4(6)		
N1 ¹ -Co1-N1 ³	91.8(2)	O3-Li1-O37	96.7(6)		
N14-Co1-N15	84.1(9)	O32-Li1-O35	87.60(19)		
N1-O3-Li1	124.7(6)	O3 ² -Li1-O3 ⁷	88.4(6)		
O3-N1-Co1	123.8(6)	O4-C2-C1	104.53(19)		
O3-N1-O1	119.2(10)	O4-C2-C3	110.2(2)		
O3-N1-O2	101.3(14)	C3-C2-C1	103.27(19)		
O1-N1-Co1	117.0(9)	N2-C1-C2	96.05(16)		
O1-N1-O2	51.1(11)	O1-O2-N1	55.5(14)		
O2-N1-Co1	113.7(13)				
Symmetry codes: ^{1–} ⁵ –Y, +X–Y, +Z; ⁶ –Y	-Y+X, -Y,1-Z; ² +Y-Z Y+X, -Y,2-Z; ⁷ +Y, +Z	X, -X, +Z; ³ +Y, +X,1- X,2-Z; ⁸ -X, -X+Y,2-	-Z; 4-X, -X+Y,1-Z; -Z		

 Table S5 Bond lengths [Å] and bond angles [°] of the hydrogen bond at 297 K of 1.

D	Н	Α	d(D–H)/Å	d(H–A)/Å	d(D–A)/Å	D-H-A/°
07	H7	O4 ¹	0.82	2.41	2.737(13)	104.6
C1	H1B	07	0.97	2.52	2.91(2)	103.8
C2	H2B	05	0.97	2.69	3.048(17)	102.1
C3	H3A	O1 ²	0.97	2.69	3.497(15)	141.1

Calculations of ΔS and N

$$\Delta S = \int_{T_1}^{T_2} \frac{QdT}{T} \approx \frac{\Delta T}{T_c} = \frac{\frac{30.66 + 28.77}{2} \times 596.30}{342} = 51.81j \cdot mol^{-1} \cdot K^{-1}$$

 $\Delta S = R l n N$

$$N = e^{\frac{\Delta S}{R}} = e^{\frac{51.81}{8.314}} = 521.55$$