Supporting information

Supramolecular Isomerism and Structural Flexibility in Coordination Networks Sustained by Cadmium Rod Building Blocks

Yassin H. Andaloussi,^a Andrey A. Bezrukov,^a Debobroto Sensharma,^a and Michael J.

Zaworotkoª*

^a Department of Chemical Sciences and Bernal Institute, University of Limerick, Co. Limerick, Y94T9PX, Ireland.

*Email: Michael.Zaworotko@ul.ie

Contents

Crystal structures2
Cd(PyImPr) ₂ - 2D -α
Cd(PyImPr) ₂ - 2D -β
Cd(PyImPr)₂- hlz -α5
Cd(PyImPr) ₂ - hlz -β
PXRD Data9
Cd(PyImPr) ₂ - 2D 9
Cd(PyImPr) ₂ - hlz 10
Cd(PyImPr) ₂ - 2D soaking experiments11
Cd(PyImPr) ₂ - hlz soaking experiments12
TGA Data13
Cd(PyImPr) ₂ - 2D
Cd(PyImPr) ₂ - hlz 13
DSC Data14
Cd(PyImPr) ₂ - 2D -α
Cd(PyImPr) ₂ - 2D -β14
Cd(PyImPr) ₂ - hIz -α15
Cd(PyImPr) ₂ - hIz -β15
Crystallographic table16
Database mining17
Mining Methodology18
Datamining results23
ML ₂ structures based on N-donor carboxylate linker23
3D N-donor carboxylate RBB topologies24
2D N-donor carboxylate RBB topologies25
ML_2 structures based on N-donor carboxylate linkers with edge-sharing octahedra RBBs26
References

Crystal structures

 $Cd(PyImPr)_2-2D-\alpha$

Figure S1: Cd(PyImPr)₂-**2D**- α as viewed along the c-axis. Hydrogen atoms have been omitted for clarity.

Figure S2: Topological representation of Cd(PyImPr)₂-**2D**- α with the points of extension – the C10 carboxylate carbon and the pyridine centroid in black and purple, respectively. These link to form edge-sharing octahedra shown in red that form 2D sheets.

Figure S3: Select close interactions within and between the 2D nets in Cd(PyImPr)₂-**2D**- α .

Figure S4: Cd(PyImPr)₂-**2D**- β as viewed along the c-axis. Hydrogen atoms have been omitted for clarity.

Figure S5: Topological representation of Cd(PyImPr)₂-**2D**- β with the points of extension – the C10 carboxylate carbon and the pyridine centroid in black and purple, respectively. These link to form edge-sharing octahedra shown in red that form 2D sheets.

Figure S6: Select close interactions within and between the 2D nets in Cd(PyImPr)₂-**2D**- β .

Cd(PyImPr)₂-**hlz**-α

Figure S7: Cd(PyImPr)₂-**hlz**- α as viewed along the c-axis. Hydrogen atoms have been omitted for clarity.

Figure S8: Topological representation of Cd(PyImPr)₂-**hlz**- α along the a-axis with the points of extension – the C10 carboxylate carbon and the pyridine centroid in black and purple, respectively. These link to form edge-sharing octahedra shown in red that form a 3D net resulting in the **hlz** topology. The angle formed between RBB units as measured using planes formed from the pyridine centroid points of extension is also shown.

Figure S9: Topological representation of $Cd(PyImPr)_2$ -**hlz**- α at an offset from the a-axis with the points of extension – the C10 carboxylate carbon and the pyridine centroid in black and purple, respectively. These link to form edge-sharing octahedra shown in red that form a 3D net resulting in the **hlz** topology.

Figure S10: Select close interactions between pore DMF molecules and the 3D framework in Cd(PyImPr)₂-hlz- α .

Cd(PyImPr)₂-**hlz**-β

Figure S11: Cd(PyImPr)₂-**hlz**- β as viewed along the c-axis. Hydrogen atoms have been omitted for clarity.

Figure S12: Topological representation of $Cd(PyImPr)_2$ -**hlz**- β along the a-axis with the points of extension – the C10 carboxylate carbon and the pyridine centroid in black and purple, respectively. These link to form edge-sharing octahedra shown in red that form a 3D net resulting in the **hlz** topology. The angle formed between RBB units as measured using planes formed from the pyridine centroid points of extension is also shown.

Figure S13: Topological representation of $Cd(PyImPr)_2$ -**hlz**- β at an offset from the a-axis with the points of extension – the C10 carboxylate carbon and the pyridine centroid in black and purple, respectively. These link to form edge-sharing octahedra shown in red and that form a 3D net resulting in the **hlz** topology.

Figure S14: Select close interactions between the 3D framework in $Cd(PyImPr)_2$ -hlz- β .

PXRD Data

Cd(PyImPr)₂-2D

Figure S15: Overlay of experimental and calculated PXRD patterns of Cd(PyImPr)₂-**2D**- α and Cd(PyImPr)₂-**2D**- β . Calculated PXRD patterns were generated from crystals collected at 100 K while experimental patterns were collected at RT. A discrepancy is notable for Cd(PyImPr)₂-**2D**- α whereby the peak at 7.89° (corresponding to the 001 plane) has very low intensity in the calculated PXRD (red) pattern. This arises from the fact that the single crystal structure has the disordered solvent removed from the model by the 'SQUEEZE' function. Adding electron density to the pore results in a calculated PXRD (blue) with a larger 001 peak intensity which aligns better with the peak seen in the experimental PXRD (black).

Figure S16: Overlay of experimental and calculated PXRD patterns of Cd(PyImPr)₂-**hlz**- α and Cd(PyImPr)₂-**hlz**- β . Calculated PXRD patterns were generated from crystals collected at 100 K while experimental patterns were collected at RT.

Figure S17: Overlay of experimental PXRD patterns of Cd(PyImPr)₂-**2D**- β after soaking in 1 ml DCM at RT for 24 h (black), 2 ml of a 1:1 mixture of DCM/DMF at RT for 24 h (red), 1 ml MeOH at RT for 24 h (blue), 1 ml MeOH at 60 °C for 24 h (green), 1 ml paraxylene at RT for 24 h (burgundy), 1 ml paraxylene at 60 °C for 24 h (navy blue), 1 ml of the mother liquor from which Cd(PyImPr)₂-**2D** was grown at RT for 24 h (purple) with experimental patterns of the Cd(PyImPr)₂-**2D**- β (pink) and Cd(PyImPr)₂-**2D**- α (brown).

Figure S18: Overlay of experimental PXRD patterns of Cd(PyImPr)₂-**hlz**- β after soaking in 1 ml DEF at 60 °C for 24 h (black), 1 ml DMF at 60 °C for 24 h (red), 1 ml DMSO at RT for 24 h (blue), 1 ml MeOH at RT for 24 h (green), 1 ml paraxylene at 60 °C for 24 h (burgundy), with experimental patterns of the Cd(PyImPr)₂-**hlz**- β (orange) and Cd(PyImPr)₂-**hlz**- α (purple).

TGA Data

Cd(PyImPr)₂-2D

Figure S19: Overlay of TGA performed on Cd(PyImPr)₂-**2D**- α and Cd(PyImPr)₂-**2D**- β . Experimental mass loss 6.9 % at 80 °C and 11.0 % at 250 °C, calculated 11.6 % (based on Cd(PyImPr)₂(MeOH)₂).

Cd(PyImPr)₂-hlz

Figure S20: Overlay of TGA performed on Cd(PyImPr)₂-**hlz**- α and Cd(PyImPr)₂-**hlz**- β . Experimental mass loss 21.3 %, calculated 21.0 % (based on Cd(PyImPr)₂(DMF)₂).

DSC Data

 $Cd(PyImPr)_2-2D-\alpha$

Figure S21: DSC trace of Cd(PyImPr)₂-**2D**-α.

 $Cd(PyImPr)_2-2D-\beta$

Figure S22: DSC trace of Cd(PyImPr)₂-**2D**-β.

 $Cd(PyImPr)_2-hlz-\alpha$

Figure S23: DSC trace of Cd(PyImPr)₂-hlz-α.

Figure S24: DSC trace of Cd(PyImPr)₂-**hIz**-β.

Crystallographic table

Compound	Cd(PyImPr)₂-2D-α	Cd(PyImPr)₂-2D-β	Cd(PyImPr)₂-hlz-α	Cd(PyImPr)₂-hlz-β
Formula	$[C_{20}H_{14}CdN_4O_8]_n$	$[C_{20}H_{14}CdN_4O_8]_n$	$[C_{20}H_{14}CdN_4O_8]_n$	$[C_{20}H_{14}CdN_4O_8]_n$
	[+solvent]		[C ₃ H ₇ NO] _{2n}	
Wavelength (λ)	Cu K-α (1.5418 Å)	Cu K-α (1.5418 Å)	Cu K-α (1.5418 Å)	Cu K-α (1.5418 Å)
MW (g·mol⁻¹)	550.75	550.75	696.94	550.75
Т (К)	100	100	100	100.15
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	P-1	P-1	P21/c	P21/c
a (Å)	5.01730(10)	4.9864(5)	5.09680(10)	4.9218(2)
b (Å)	9.6508(3)	10.0378(11)	18.2442(3)	18.3280(7)
<i>c</i> (Å)	11.4756(3)	10.0982(11)	15.0256(3)	10.9159(5)
α (°)	82.3570(10)	72.982(5)	90.00	90.00
β (°)	79.5680(10)	83.424(6)	96.0580(10)	97.893(2)
γ (°)	80.0060(10)	79.174(5)	90.00	90.00
V (Å ³)	535.21(2)	473.75(9)	1389.38(5)	975.36(7)
ρ _{calc} (mg·m⁻³)	1.709	1.930	1.666	1.875
Ζ, Ζ΄	1, 0.5	1, 0.5	2, 0.5	2, 0.5
Observed reflections	8611	5542	13927	14024
$R_1, wR_2[I > 2\sigma(I)]$	0.0407, 0.1063	0.0779, 0.2047	0.0310, 0.0790	0.0757, 0.1779
R ₁ , wR ₂ (all data)	0.0409, 0.1082	0.0815, 0.2172	0.0320, 0.0798	0.0773, 0.1785
Goodness-of-fit on F ²	1.054	1.111	1.040	1.323
R _{int} value (%)	4.96	5.53	4.97	5.34
CCDC number	2241488	2241486	2241489	2241487

Table S1. Selected Crystallographic Data and Structure Refinement Parameters

Database mining

- Simple search criteria work, though with a large number of irrelevant hits
- More refined search criteria may not if it is not shown in the ConQuest representation
- As such, other methods are required to find a more comprehensive list of RBB structures

Figure S25: Example of shortcoming for ConQuest search whereby for a periodic structure, a search query must match a section of the diagrammatic representation of the structure which results in too broad a search if only a small section is used (as in search criteria 1), or the desired structure is not found at all if the search criteria goes beyond the diagrammatic representation (as in search criteria 2 and 3).

Mining Methodology

The datamining strategy used in this work to identify single-linker ML_2 MOFs (M = metal ion, L = bifunctional N-donor carboxylate ligand) and identify their topologies is comprised of 6 steps schematically illustrated in Figure S26. Each unique refcode was treated as an individual entry.

Step 1. A list of MOFs containing 116981 refcodes was obtained from the Cambridge Structural Database, CSD 'MOF subset' (version: Sept 2022).¹

Step 2. Structures with ML_2 stoichiometry were identified using an analysis of the compound names in the list from step 1. Compound names were obtained from the CSD using the Application Programming Interface (CSD Python API).² Analysis of the compound names was performed using custom-written Python script which implements the workflow briefly described below. Each compound name in the CSD can be broken down to parts corresponding to the linker, metal, and solvent. A few representative examples are provided in Figure S27 to illustrate this. Stoichiometric coefficients for the linker and metal were extracted from the name text and so stoichiometric linker to metal (L/M) ratio was determined. The list from step 1 was narrowed down to single-linker structures having L/M = 2 (6943 refcodes).

We note that structures wherein the compound names in the database do not follow this naming convention were not included in these results. For example, the **hlz** structure, Mn(3-(pyridin-4-yl)acrylic acid)₂ (refcode: OTIQAL), has the compound name "catena-((μ -3-(pyridin-4-yl)acrylato)-manganese dimethylformamide solvate)" in the CSD giving an L/M ratio of 1, despite in-fact having 2 ligands per metal. These structures have not been included to ensure consistency.

Step 3. Structures having $M(N)_2(O)_2$ coordination were identified using the ConQuest³ query shown in figure S28. This narrows the list from step 2 to 2980 structures.

Step 4. Structures having linkers with 'N-donor' & 'carboxylate' groups both coordinated to different metal atoms were identified to find single-linker structures with bifunctional N-donor carboxylate linkers. This analysis was performed using custom-written Python script which implements the algorithm reported by us previously.⁴

Additionally, exceptions were handled in the following way:

Structures involving M³⁺ ions involved additional counter anions attached to the metal and were excluded: ETALUJ, LIRCUN, LOTJUB, ZECGIB, ZECHEY, ZECHIC, ZECHOI, ZECHUO.

Structures based on racemate linkers were treated as single-linker ML₂ structures and so were included in the results: AVOGID, SUCMEL, WUWVOA.

Due to single-crystal structure disorder in the linker, 29 structures were automatically identified by the code as being mixed-linker structures. Manual inspection confirmed these to be single-linker structures and so were included.

This resulted in 1138 structures being selected for further analysis.

Step 5. The list of refcodes from step 4 was matched with topologies reported in the TOPOS TTO database (version: Dec 2021)⁵ using a custom-written Python script. Valence-bonded MOF topology determinations in either the standard or cluster representation were used. In

the rare examples where the standard representation and the cluster representation resulted in differing topologies (as in AHIFAB, ARUWUH, BEPTUM, BEQJEP, DAFZAM, ECIHOQ, HUDQUT, IWORET, MEDQOC, NUNVOI01, TUVYAL, WOFVET, XEWGEN) the standard representation was used as the "automated topology determination".

Step 6. The list of refcodes from step 4 was manually inspected to detect RBBs and assign updated topologies.

For structures with finite molecular building blocks (MBBs), this would typically equate to the metal centres and ligands or, where clusters were involved, points that link metal clusters together, such as the carboxylate carbons surrounding the copper paddlewheel MBB in HKUST-1.⁶

In the case of RBBs, metal centres are linked through common points of extension that form the nodes for the resultant network topology.⁷ For the ML₂ bifunctional N-donor carboxylates discussed here, this would typically include the carboxylate carbons and N-donors of the linker. (Figure S29)

Net simplification and topology determination is then performed on Topospro,⁵ giving the final topology.

Lead coordination compounds required additional consideration. A common coordination mode of Pb²⁺ involves so-called hemi-directional⁸ bonding wherein a Pb ion forms 6 shorter interactions and 2 marginally longer interactions. There is inconsistency in the literature and also in mercury as to whether the longer interactions should be considered as formal bonds (see NICOPB/NICOPB02/NICOPB04 and NICOPB01/NICOPB03). For the purposes of topology determination, all such interactions, where they are evident, are considered as formal bonds. Where this is present the row is marked with [†].

Figure S26: Database mining workflow used to identify single-linker ML_2 MOFs (M = metal ion, L = bifunctional N-donor carboxylate linker) and identify their topologies.

Figure S27: Representative examples demonstrating compound name analysis (Step 2).

Figure S28: ConQuest query used to identify structures having $M(N)_2(O)_2$ metal coordination (Step 3).

. Metal centre forms 6-connected node and a point on the ligand forms 3connected node Nodes linked according to bond connectivity Structure rotated (3,6)-connected Point symbols: (4³)₂(4⁶.6⁶.8³) Topology: kgd

Topology determination for MBBs

Topology determination for RBBs

RBB identified with points of extension around RBB used as nodes. In this case the pyridyl centre and the carboxylate carbons are appropriate points of extension.

Nodes linked within RBB forming the opposite edge-sharing octahedra

Nodes linked between RBB (5,8)-connected Point symbols: (3⁴.4⁴.5²)(3⁸.4¹⁰.5⁷.6³) Topology: 2D-1

Figure S29: Example of topology determination using Cd(PyImPr)₂-**2D**. As can be seen with the topology determination for MBBs (left), the end result loses the information regarding the 1D chain while this information is retained on the right.

Datamining results

ML₂ structures based on N-donor carboxylate linker

Figure S30: Sankey diagram representing the number of refcodes from each automatically determined topology (left) that result in a given manually determined topology (right).

S		1D	sql	dia	hlz	3D-3	zhl	2D-1	2D-2	lvt	hcb	bcu	Other	Sum
atic	Unclassified	263	58	13	3	12	1	4	2	2	1	3	24	386
nin	sql		349		1	2								352
ern	dia			186										186
det	rtl				47									47
gy (ant					15	26							41
olo	kgd							51						51
ob	lvt									13				13
ict	hcb		3								16			19
nat	bcu					1						9		10
ton	Other		1										32	33
Au	Sum	263	411	199	51	30	27	55	2	15	17	12	56	1138

Manual topology determination

Figure S31: Correlation matrix representing the number of refcodes from each automatically determined topology (rows) that result in a given manually determined topology (columns).

3D N-donor carboxylate RBB topologies

Figure S32: Possible 3D RBB topologies for N-donor carboxylates and their respective point groups (top). Points of extension for each topology are shown through carboxylate carbons (black) and the N-donors (purple). The RBB (bottom) in the **hlz** and **3D-3** topologies are based on opposite-edge sharing octahedra while the **zhl** topology is based on adjacent-edge sharing octahedra. In the case of the **3D-3** topology, network connectivity is either achieved by each edge-sharing octahedra twisting along the RBB, to facilitate bonding to alternating RBBs (see LUFCAS), or through the use of ligands with significantly bent conformations (see JOJJEY).

2D N-donor carboxylate RBB topologies

Figure S33: Possible 2D RBB topologies for N-donor carboxylates and their respective point groups. Points of extension for each topology are shown through carboxylate carbons (black) and the N-donors (purple). The RBBs in the **2D-1** and **2D-2** topologies are based on opposite-edge sharing octahedra.

ML₂ structures based on N-donor carboxylate linkers with edge-sharing octahedra RBBs

Step 6 of database mining identified 165 ML₂ refcodes based on N-donor carboxylate linkers and edge-sharing octahedra RBBs. Table S2 lists the structures with RBBs. The structures presented in this manuscript have been included at the end of the table.

Name	Network dimension ality	Topology	Point Symbol	Linker	Metal ion	CSD Refcode/ Number	Year	DOI and reference
Fe(INA) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	Isonicotinic acid	Fe ²⁺	HIBVET,	1998, 2022	10.1039/A806499G ⁹ 10.1002/asia.202101305 ¹⁰
Co(INA) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	Isonicotinic acid	Co ²⁺	ABAVIJ/ABAVOP, TATSIS, TATSIS01, CUHUD	2004, 2012, 2012, 2020	10.1039/b404485a ¹¹ 10.1002/chem.201102295 ¹² 10.3866/PKU.WHXB201206123 ¹³ 10.1016/j.ica.2020.119728 ¹⁴
Mg(INA) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	Isonicotinic acid	Mg ²⁺	XEQLEM, XEQLEM01, KOPLAF	2013, 2014, 2019	10.1039/C2DT31394D ¹⁵ 10.1039/C3CE42660B ¹⁶ 10.1039/C9MH00133F ¹⁷
Mn(INA) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	Isonicotinic acid	Mn²⁺	HIVQAG, OTIQEP, IVELUS/IVEMAZ/IVEMED/IVEMIH/I VEMIH01, FEJFAE, NAHBOR/NAGZAA/IVEMIH02/IVEM IH03/IVEMIH04	2014, 2016, 2016, 2017, 2020	10.1039/c3ce42660b ¹⁶ 10.1021/acs.inorgchem.6b00758 ¹⁸ 10.1002/chem.201601784 ¹⁹ 10.1039/C7CE01766A ²⁰ 10.1021/jacs.0c09475 ²¹
Cd(INA) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	Isonicotinic acid	Cd ²⁺	GIMSUS, SIVVAW	2013, 2014	10.7868/S0132344X13030080 ²² 10.1039/C3CE42216J ²³
Mn-FINA-1	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-fluoroisonicotinic acid	Mn ²⁺	OTIPOY	2016	10.1021/acs.inorgchem.6b0075818
Cd-FINA-1	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-fluoroisonicotinic acid	Cd ²⁺	OTOVEA	2016	10.1021/acs.inorgchem.6b0075818
Co-FINA-1	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-fluoroisonicotinic acid	Co ²⁺	TATSEO	2012	10.1002/chem.20110229512
Mn-FPAA-1	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-(3-fluoropyridin-4-yl)acrylic acid	Mn ²⁺	OTIPUE	2016	10.1021/acs.inorgchem.6b0075818
Co-FPAA-1	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-(3-fluoropyridin-4-yl)acrylic acid	Co ²⁺	OTOVIE	2016	10.1021/acs.inorgchem.6b0075818
Cd-FPAA-1	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-(3-fluoropyridin-4-yl)acrylic acid	Cd ²⁺	OTOVAW	2016	10.1021/acs.inorgchem.6b0075818
Cd(tetza) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	1H-tetrazol-1-ylacetic acid	Cd ²⁺	JOJHUM	2008	10.1021/cg7012182 ²⁴
Mn(tetza) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	1H-tetrazol-1-ylacetic acid	Mn ²⁺	UALLOL	2008	10.1021/cg7012182 ²⁴
Co(tetza) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	1H-tetrazol-1-ylacetic acid	Co ²⁺	JOIIIC	2008	10.1021/cg7012182 ²⁴
Cu(tetza) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	1H-tetrazol-1-ylacetic acid	Cu ²⁺	KOBGOY02	2009	10.1016/j.ica.2008.10.009 ²⁵
Mn(CIP) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	4-(4-carboxylphenyl)-2,6-di(4-imidazol-1- yl)phenyl)pyridine)	Mn ²⁺	SOFWOC	2019	10.1039/C9DT01430F ²⁶
Co(L1') ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	(3-cyanophenyl)-[2,3'-bipyridin]-6- yl)benzoic acid	Co ²⁺	LAJKIU	2020	10.1016/j.poly.2020.114918 ²⁷
Mn(L1') ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	(3-cyanophenyl)-[2,3'-bipyridin]-6- yl)benzoic acid	Mn ²⁺	LAJKOA	2020	10.1016/j.poly.2020.114918 ²⁷
Co(IMPAA) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	(2E)-3-[4-(1H-imidazol-1- ylmethyl)phenyl]acrylic acid	Co ²⁺	DUFCEO	2015	10.14102/j.cnki.0254-5861.2011-0419 ²⁸

Table S2: List of known ML₂ RBB structures made of bifunctional ligands.

Cd(3-pyoa) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	5-(3-pyridyl)-1,3,4- oxadiazole-2-thioacetic acid	Cd ²⁺	KOHBUF	2008	10.1039/b803736a ²⁹
Cd(4-tzbc) ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	4-(1,2,4-triazolylmethyl) benzoic acid	Cd ²⁺	BEZKOI, BEZKOI01	2012, 2015	10.1016/j.synthmet.2012.07.024 ³⁰ 10.1039/C4TA06671E ³¹
Co(imta)2**	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	2-{4-[(1H-imidazol-1-yl)methyl]-1H-1,2,3- triazol-1-yl}acetic acid	Co ²⁺	NAFTIA	2016	10.1039/C5CE02277K ³²
Mn(imta)2	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	2-{4-[(1H-imidazol-1-yl)methyl]-1H-1,2,3- triazol-1-yl}acetic acid	Mn ²⁺	NAFTOG	2016	10.1039/C5CE02277K ³²
Cd(imta)2	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	2-{4-[(1H-imidazol-1-yl)methyl]-1H-1,2,3- triazol-1-yl}acetic acid	Cd ²⁺	NAFTUM	2016	10.1039/C5CE02277K ³²
CuL ₂	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-bromo-5-(4-carboxyphenyl)pyridine	Cu ²⁺	MODZAJ	2019	10.1016/j.molstruc.2019.02.046 ³³
Cd(3-(4-(2- pyridin-3-yl- vinyl)phenyl)	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	3-{4-(2-pyridin-3-yl-vinyl)-phenyl}- propenoic acid	Cd ²⁺	TIKWIU	2007	10.1021/cg060677j ³⁴
propenate) ₂								
Cd(S-3- pytzipa)(R-3- pytzipa)*	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	(S/R)5-(n-pyridyl)tetrazole-2-isopropionic acid	Cd ²⁺	SUCMEL	2017	10.1007/s10904-017-0623-8 ³⁵
Cd(S- pztza)(R- pztza)*	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	(S/R)5-(2-pyrazinyl)tetrazole-2(1- methyl)acetic acid	Cd ²⁺	AVOGID	2016	10.1016/j.jssc.2016.09.021 ³⁶
MCF-44	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	4-(4-pyridinyl)benzoic acid	Mn ²⁺	QOQWOK/QOQWOK01	2014	10.1007/s11426-013-5048-9 ³⁷
MCF-43	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	4-(3-pyridinyl)benzoic acid	Mn ²⁺	LUXBAI	2010	10.1002/zaac.200900412 ³⁸
Mg(4,3-pyb) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	4-(3-pyridinyl)benzoic acid	Mg ²⁺	KUBXUC	2014	10.1016/j.inoche.2014.08.034 ³⁹
MCF-34	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	3-(pyridin-4-yl)benzoic acid	Mn ²⁺	PIHJOH,	2013,	10.1080/15533174.2012.75815340
						LIJNOJ/LIJNOJ01/LIJPAX/ LIJPAX01/LIJPAX02/LIJPOL/ PIHJOH01/PIHJOH02/ PIHJOH03,	2013,	10.1038/ncomms3534 ⁴¹
						BOYTEQ	2014	10.14102/j.cnki.0254-5861.2011-031942
Mg(3,4-pyb) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	3-(pyridin-4-yl)benzoic acid	Mg ²⁺	KUBXOW	2014	10.1016/j.inoche.2014.08.034 ³⁹
Mn(pmba) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	3-(pyridin-4-yl)-3-methyl-benzoic acid	Mn ²⁺	NATRUX	2012	10.1007/s10870-011-0225-143
MnL ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	4-(pyridin-3-ylethynyl)benzoic acid	Mn ²⁺	WOHYUN	2000	10.1021/ic000227v ⁴⁴
Mn(mpba) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	3-(3-methylpyridin-4-yl)benzoic acid	Mn ²⁺	HULGAZ/HULGED	2020	10.1021/acs.inorgchem.0c0002245
Co(mpba) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	3-(3-methylpyridin-4-yl)benzoic acid	Co ²⁺	HULGIH/HULGON	2020	10.1021/acs.inorgchem.0c0002245
Mg(NA) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	Nicotinic acid	Mg ²⁺	XEQLIQ	2013	10.1039/C2DT31394D ¹⁵
Mn(NA) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	Nicotinic acid	Mn ²⁺	WOHYOH/WOHYOH01	2000	10.1021/ic000227v ⁴⁴
Cd(FNA) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	5-fluoronicotinic acid	Cd ²⁺	NIMVUC	2013	10.1039/C3CE41116H ⁴⁶
Mn(3-pyoa) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	5-(3- pyridyl)-1,3,4-oxadiazole-2-thioacetic acid	Mn ²⁺	DAMVEW	2017	10.17344/acsi.2016.310947
Mn(HL) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	5-(4H-1,2,4-Triazol-4-yl)benzene-1,3- dicarboxylic Acid	Mn ²⁺	IWEPUW	2011	10.1021/cg200068v ⁴⁸
Cd(L ²) ₂	3D	zhl	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁴ .7)	(E)-6-((pyridine-3-ylmethylene)amino)-2- napthoic acid	Cd ²⁺	REVGUW	2013	10.1016/j.poly.2013.01.019 ⁴⁹
Pb(NA) ₂ †	3D	3D –	(5,8)-c	Nicotinic acid	Pb ²⁺	NICOPB,	1975,	[No DOI Found] ⁵⁰
		Topology 3	(3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)			NICOPB01,	2009,	10.5517/ccqpb2s ⁵¹
						NICOPB02,	2011,	10.1016/j.ultsonch.2010.01.01152
						NICOPB03,	2011,	10.1007/s10904-011-9504-853
		1				NICOPB04	2018	10.1016/j.solidstatesciences.2018.03.00454
Pb(ANA) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	2-aminonicotinic acid	Pb ²⁺	POQLUF	2019	10.1039/C9DT02928A ⁵⁵

Pb(FNA) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	5-fluoronicotinic acid	Pb ²⁺	TUCZAV	2020	10.1071/CH19416 ⁵⁶
Pb(3-pyb) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	3-(3-pyridyl)acrylic acid	Pb ²⁺	FEZVUC	2005	10.1002/ejic.20040064857
Zn(tetza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	1H-tetrazol-1-ylacetic acid	Zn ²⁺	JOJJEY	2008	10.1021/cg7012182 ²⁴
Cd(tetza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	1H-tetrazol-1-ylacetic acid	Cd ²⁺	JOJHUM01, JOJHUM02	2009, 2015	10.1107/S160053680904255X ⁵⁸ 10.1016/j.jssc.2015.02.024 ⁵⁹
Mn(tetza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	1H-tetrazol-1-ylacetic acid	Mn ²⁺	JOJJAU01	2017	10.1039/C7RA07997D ⁶⁰
Co(tetza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	1H-tetrazol-1-ylacetic acid	Co ²⁺	JOJJIC01, JOJJIC02	2015, 2017	10.1016/j.jssc.2015.08.04961 10.1039/C7RA07997D60
Ni(tetza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	1H-tetrazol-1-ylacetic acid	Ni ²⁺	TOHRUF, TOHRUF01	2014, 2017	10.1016/j.inoche.2014.05.039 ⁶² 10.1039/C7RA07997D ⁶⁰
Pb(tetza) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	1H-tetrazol-1-ylacetic acid	Pb ²⁺	IZEBUL, IZEBUL01	2011, 2011	10.5517/ccvt4wn ⁶³ 10.5517/ccv8kn9 ⁶⁴
Cd(TBA) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	4-(1H-1,2,4-triazol-1-yl)benzoic acid	Cd ²⁺	LUFCAS	2012	10.4236/ojic.2012.2300965
Pb(imta) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	2-{4-[(1H-imidazol-1-yl)methyl]-1H-1,2,3- triazol-1-yl}acetic acid	Pb ²⁺	NAFWOJ	2016	10.1039/c5ce02277k ³²
Cd ₂ (HL) ₄	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	1H-indazole-6-carboxylic acid	Cd ²⁺	UQIXEA	2021	10.3390/inorganics903002066
Zn(pytza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	5-(4-pyridyl)tetrazole-2-acetic acid	Zn ²⁺	LUFHUR	2015	10.1039/C5RA03848K ⁶⁷
Mg(pytza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	5-(4-pyridyl)tetrazole-2-acetic acid	Mg ²⁺	OPIRIQ	2016	10.1016/j.ica.2016.06.01568
Ni(pytza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	5-(4-pyridyl)tetrazole-2-acetic acid	Ni ²⁺	OZONIC	2016	10.1016/j.inoche.2016.10.00769
Mn(pytza) ₂	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	5-(4-pyridyl)tetrazole-2-acetic acid	Mn ²⁺	WAGKIB	2016	10.1007/s11243-015-0003-6 ⁷⁰
Pb(4,3- pyb)2 †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	4-(3-pyridinyl)benzoic acid	Pb ²⁺	GURYAU, GURYAU01	2009, 2011	10.1016/j.jssc.2009.09.004 ⁷¹ 10.5517/ccwg3s6 ⁷²
Pb(bmzbc) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	4-(benzimidazole-1-yl)benzoic acid	Pb ²⁺	YUDRIA	2016	10.14102/j.cnki.0254-5861.2011-0886 ⁷³
Pb(qlc) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	Quinoline-6-carboxylic acid	Pb ²⁺	BOPVIM	2009	10.1016/j.molstruc.2008.12.05974
Pb(4-pyoa) ₂ †	3D	3D – Topology 3	(5,8)-c (3 ⁴ .4 ³ .5 ² .6)(3 ⁸ .4 ⁹ .5 ⁶ .6 ⁵)	5-(4-pyridyl)-1,3,4-oxadiazole-2-thioacetic acid	Pb ²⁺	КОНВІТ	2008	10.1039/b803736a ²⁹
Cd(PAA) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	3-(pyridin-3-yl)acrylic acid	Cd ²⁺	FIPFIU, FIPFIU01, FIPFIU02, FIPFIU03	2005, 2004, 2004, 2009	10.1002/aoc.699 ⁷⁵ [No DOI Found] ⁷⁶ 10.5517/ccp5bkq ⁷⁷ 10.1016/j.molstruc.2008.10.046 ⁷⁸
Mn(PAA) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	3-(pyridin-3-yl)acrylic acid	Mn ²⁺	BIVXIO	2008	10.1039/B715460G ⁷⁹
Cd(PPA) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	3-pyridine propionic acid	Cd ²⁺	QATROU	2012	10.1016/j.inoche.2011.10.010 ⁸⁰
Pb(Pyta) ₂ †	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	4-pyridylthioacetic acid	Pb ²⁺	DAFZIU	2004	10.1039/b403498h ⁸¹
Pb(L–Br) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	5-bromonicotinic acid	Pb ²⁺	FONXIS	2019	10.1016/j.jssc.2019.05.044 ⁸²

Pb(L–Cl) ₂	2D	2D –	(5,8)-c	5-chloronicotinic acid	Pb ²⁺	ZOMQAW,	2019,	10.1016/j.molstruc.2019.05.03183
		Topology 1	(34.44.52)(38.410.57.63)			ZOMQAW1	2019	10.1016/j.jssc.2019.05.044 ⁸²
Mn(3-aba) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	3-amino benzoic acid	Mn ²⁺	UCUQEP	2006	10.1002/ejic.200500985 ⁸⁴
Cd(3-aba) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	3-amino benzoic acid	Cd ²⁺	MEDQUI	2006	10.5517/cc9t3v1 ⁸⁵
Co(3-aba) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ 4 ⁴ 5 ²)(3 ⁸ 4 ¹⁰ 5 ⁷ 6 ³)	3-amino benzoic acid	Co ²⁺	MEGBOQ	2006	10.5517/ccb1g5z ⁸⁶
Ni(3-aba) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ 4 ⁴ 5 ²)(3 ⁸ 4 ¹⁰ 5 ⁷ 6 ³)	3-amino benzoic acid	Ni ²⁺	MEGBUW	2006	10.5517/ccb1g5z ⁸⁶
Mn(C ₈ H ₈ NO ₂)	2D	2D -	(5,8)-c (24 44 52)(28 410 57 63)	3-amino-p-toluic acid	Mn ²⁺	ULEZUI	2015	10.1134/S0022476615060165 ⁸⁷
² Co(C ₈ H ₈ NO ₂) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ 4 ⁴ 5 ²)(3 ⁸ 4 ¹⁰ 5 ⁷ 6 ³)	3-amino-p-toluic acid	Co ²⁺	ULIBAU	2015	10.1134/S0022476615060165 ⁸⁷
Ni(C ₈ H ₈ NO ₂) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ 4 ⁴ 5 ²)(3 ⁸ 4 ¹⁰ 5 ⁷ 6 ³)	3-amino-p-toluic acid	Ni ²⁺	ULIBEY	2015	10.1134/S0022476615060165 ⁸⁷
Zn(C ₈ H ₈ NO ₂) ₂	2D	2D -	(5,8)-c (24 44 52)(28 410 57 63)	3-amino-p-toluic acid	Zn ²⁺	ULIBIC	2015	10.1134/S0022476615060165 ⁸⁷
Mn(3,4-	2D	2D -	(5,8)-c (24,44,52)(28,410,57,63)	3,4-diamino benzoic acid	Mn ²⁺	HUWGEO	2020	10.1107/s2056989020006805 ⁸⁸
Cd(3-(3-(2- pyridin-4-yl- vinyl)phenyl)	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	3-{3-(2-pyridin-4-yl-vinyl)-phenyl}- propenoic acid	Cd ²⁺	TIKWOA	2007	10.1021/cg060677j ³⁴
propenate) ₂					a 12:			
Cd(Gly ₃) ₂	20	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	μ ₃ -glycyl-glycyl-glycine	Cd2+	MITROX	2008	10.1021/cg/00/24h ⁸⁹
Mn(ima) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-imidazole-1-yl)acetic Acid	Mn ²⁺	JEXSAH, JEXSAH01	2006, 2016	10.1071/CH06183 ⁹⁰ CSD Communication
Cd(ima)₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-imidazole-1-yl)acetic Acid	Cd ²⁺	SEYVEY, SEYVEY01	2007, 2016	10.1016/j.molstruc.2006.07.021 ⁹¹ CSD Communication
Co(ima) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-imidazole-1-yl)acetic Acid	Co ²⁺	FUFYEL, FUFYEL01, FUFYEL02, FUFYEL03	2009, 2009, 2010, 2012	10.1524/ncrs.2009.0212 ⁹² 10.1016/j.jssc.2009.07.059 ⁹³ 10.1080/00958972.2010.481717 ⁹⁴ 10.1016/j.poly.2012.04.018 ⁹⁵
Fe(ima) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-imidazole-1-yl)acetic Acid	Fe ²⁺	FATRID	2012	10.1016/j.poly.2012.04.01895
Ni(ima) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-imidazole-1-yl)acetic Acid	Ni ²⁺	JEXSEL	2006	10.1071/CH0618390
Pb(ima) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-imidazole-1-yl)acetic Acid	Pb ²⁺	QAFQAR	2010	10.5517/cctypyc ⁹⁶
Mn((S)- imp)((R)- imp)*	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	(S/R)-2-(1H-imidazole-1-yl) propionic acid	Mn ²⁺	WUWVOA	2010	10.1021/cg100136897
Cd(tza) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-1,2,4-triazol-1-yl)acetic acid	Cd ²⁺	XOTTAC	2009	10.1016/j.ica.2008.06.01398
Mn(tza) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-1,2,4-triazol-1-yl)acetic acid	Mn ²⁺	PEDVEB	2013	10.1016/j.molstruc.2012.07.01699
Co(tza) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(1H-1,2,4-triazol-1-yl)acetic acid	Co ²⁺	WUKFUF	2014	10.1515/ncrs-2014-0143100
Cu(2-tza) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2H-tetrazol-2-ylacetic acid	Cu ²⁺	PARPIK	2010	10.1016/j.inoche.2010.05.003 ¹⁰¹

Pb(4-pytza) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	5-(4-pyridyl)tetrazole-2-acetic acid	Pb ²⁺	LUSYOP	2015	10.1039/C5RA17301A ¹⁰²
Pb(3- pytza) ₂ †	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	5-(3-pyridyl)tetrazole-2-acetic acid	Pb ²⁺	DOPKUQ	2014	10.1016/j.ica.2014.07.034 ¹⁰³
Pb(pytac) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	2-(4-pyridyl)thiazole-4-carboxylic acid	Pb ²⁺	NATVUB	2012	10.1007/s10870-011-0234-0 ¹⁰⁴
Cd(DTBA) ₂ ·H ₂ O	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	3,5-di(1H-1,2,4-triazol-1-yl)benzoic acid	Cd ²⁺	OGAPIY	2018	10.1039/C8CE01233D ¹⁰⁵
[Mn(3- cptpy) ₂] _n	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	4'-(4-carboxyphenyl)-3,2':6',3"-terpyridine	Mn ²⁺	DIRMOI	2014	10.1039/C3DT52500G ¹⁰⁶
Cd(CO ₂ (CH ₂) ₅ NH ₂) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	6-aminocaproic acid	Cd ²⁺	LAZNUW	2005	10.1002/chem.200500922 ¹⁰⁷
Poly-[CdL ₂]	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	N-(4-picolyl)-4-(40-carboxyphenoxy)1,8- naphthalimide	Cd ²⁺	DAQLOZ/ DAQLUF	2017	10.1039/C7CC03482B ¹⁰⁸
Ni(Haip) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	5-aminoisophthalic acid	Ni ²⁺	ELOTAD	2021	10.1038/s41467-020-20489-2 ¹⁰⁹
Mn(Haip)₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	5-aminoisophthalic acid	Mn ²⁺	ZOYJUU, ZOYJUU01, ZOYJUU02, ELOTEH/ELOSIK	2015, 2021, 2021, 2021	10.1021/ic502664e ¹¹⁰ 10.1038/s41467-020-20489-2 ¹⁰⁹ CSD Communication 10.1038/s41467-020-20489-2 ¹⁰⁹
Co(Haip) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	5-aminoisophthalic acid	Co ²⁺	WEMFEA, WEMFEA01, ELOSOQ	2006, 2021, 2021	10.1021/ic0602244 ¹¹¹ CSD Communication 10.1038/s41467-020-20489-2 ¹⁰⁹
Co(HL) ₂	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	4'-(pyridin-4-yl)-[1,1'-biphenyl]-3,5- dicarboxylic acid	Co ²⁺	CIDBEZ	2018	10.1039/C8CE00860D ¹¹²
Mn(InMe-4- py) ²	2D	2D – Topology 2	(5,8)-c (3 ⁴ .4 ³ .5 ³)(3 ⁸ .4 ⁹ .5 ⁸ .6 ³)	2-(4-pyridylmethyl)-1,3-dioxoisoindoline-5- carboxylic acid	Mn ²⁺	YOQMOJ	2019	10.1016/j.jssc.2019.07.033 ¹¹³
Fe(pyoa) ₂	2D	2D – Topology 2	(5,8)-c (3 ⁴ .4 ³ .5 ³)(3 ⁸ .4 ⁹ .5 ⁸ .6 ³)	2-(pyridin-3-yloxy)acetic acid	Fe ²⁺	UUSIOV	2008	10.1021/ic701879y ¹¹⁴
Cd(PyImPr) ₂ - 2D	2D	2D – Topology 1	(5,8)-c (3 ⁴ .4 ⁴ .5 ²)(3 ⁸ .4 ¹⁰ .5 ⁷ .6 ³)	β-(3,4-pyridinedicarboximido)propionic acid	Cd ²⁺	2241486, 2241488	2023	This paper
Cd(PyImPr) ₂ - hlz	3D	hlz	(5,8)-c (3 ⁴ .4 ² .5 ⁴)(3 ⁸ .4 ⁸ .5 ⁶ .6 ⁵ .7)	β-(3,4-pyridinedicarboximido)propionic acid	Cd ²⁺	2241487, 2241489	2023	This paper

[†]Compounds with hemidirectional Pb²⁺.

*Compounds involving racemic enantiomers.

**At the time of writing, the publication associated with NAFTIA mis-assigns atom types on the linker and so linker name was determined from the reaction procedure used.

References

- 1. P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward and D. Fairen-Jimenez, *Chem. Mater.*, 2017, **29**, 2618-2625.
- 2. C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, *Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.*, 2016, **72**, 171-179.
- 3. I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.*, 2002, **58**, 389-397.
- 4. N. Kumar, S.-Q. Wang, S. Mukherjee, A. A. Bezrukov, E. Patyk-Kaźmierczak, D. O'Nolan, A. Kumar, M.-H. Yu, Z. Chang, X.-H. Bu and M. J. Zaworotko, *Chem. Sci.*, 2020, **11**, 6889-6895.
- 5. V. A. Blatov, A. P. Shevchenko and D. M. Proserpio, *Cryst. Growth Des.*, 2014, **14**, 3576-3586.
- 6. S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, *Science*, 1999, **283**, 1148-1150.
- 7. A. Schoedel, M. Li, D. Li, M. O'Keeffe and O. M. Yaghi, *Chem. Rev.*, 2016, **116**, 12466-12535.
- 8. L. Shimoni-Livny, J. P. Glusker and C. W. Bock, *Inorg. Chem.*, 1998, **37**, 1853-1867.
- 9. R.-G. Xiong, S. R. Wilson and W. Lin, J. Chem. Soc., Dalton Trans., 1998, 4089-4090.
- 10. H. D. Singh, S. Nandi, D. Chakraborty, K. Singh, C. P. Vinod and R. Vaidhyanathan, *Chem. - Asian J.*, 2022, **17**, e202101305.
- 11. Q. Wei, M. Nieuwenhuyzen, F. Meunier, C. Hardacre and S. L. James, *Dalton Trans.*, 2004, 1807-1811.
- 12. P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, *Chem. Eur. J.*, 2012, **18**, 688-694.
- 13. L. W.-H. HUA Xiao-Hui, XU Yi-Zhuang, WU Jin-Guang, *Acta Phys. -Chim. Sin.*, 2012, **28**, 1815-1822.
- 14. L. Zhu, N. Liu, L. Yu, X. Jiang and X. Li, *Inorg. Chim. Acta*, 2020, **510**, 119728.
- 15. T. Liu, D. Luo, D. Xu, H. Zeng and Z. Lin, *Dalton Trans.*, 2013, **42**, 368-371.
- 16. Y.-C. He, J. Guo, H.-M. Zhang, J. Yang, Y.-Y. Liu and J.-F. Ma, *CrystEngComm*, 2014, **16**, 4210-4214.
- 17. S. Nandi, P. De Luna, R. Maity, D. Chakraborty, T. Daff, T. Burns, T. K. Woo and R. Vaidhyanathan, *Mater. Horiz.*, 2019, **6**, 1883-1891.
- 18. P. Pachfule, B. Garai and R. Banerjee, *Inorg. Chem.*, 2016, **55**, 7200-7205.
- 19. D. Banerjee, H. Wang, A. M. Plonka, T. J. Emge, J. B. Parise and J. Li, *Chem. Eur. J.*, 2016, **22**, 11816-11825.
- 20. R.-G. Lin, L. Li, R.-B. Lin, H. Arman and B. Chen, *CrystEngComm*, 2017, **19**, 6896-6901.
- 21. H. Wang, M. Warren, J. Jagiello, S. Jensen, S. K. Ghose, K. Tan, L. Yu, T. J. Emge, T. Thonhauser and J. Li, *J. Am. Chem. Soc.*, 2020, **142**, 20088-20097.
- 22. M. S. Zavakhina, D. G. Samsonenko, M. P. Yutkin, D. N. Dybtsev and V. P. Fedin, *Russ. J. Coord. Chem.*, 2013, **4**, 211.
- 23. S. Gao, R.-Q. Fan, L.-S. Qiang, P. Wang, S. Chen, X.-M. Wang and Y.-L. Yang, *CrystEngComm*, 2014, **16**, 1113-1125.
- 24. W.-W. Dong, J. Zhao and L. Xu, *Cryst. Growth Des.*, 2008, **8**, 2882-2886.
- 25. T. D. Keene, Y.-H. Deng, F.-G. Li, Y.-F. Ding, B. Wu, S.-X. Liu, C. Ambrus, O. Waldmann, S. Decurtins and X.-J. Yang, *Inorg. Chim. Acta*, 2009, **362**, 2265-2269.
- 26. D.-D. Feng, Y.-D. Zhao, X.-Q. Wang, D.-D. Fang, J. Tang, L.-M. Fan and J. Yang, *Dalton Trans.*, 2019, **48**, 10892-10900.
- 27. Q.-Q. Yan, B. Li and G.-P. Yong, *Polyhedron*, 2021, **194**, 114918.
- 28. X.-L. Nie, C.-Y. Hu, C.-G. Huang and X.-C. Shang-Guan, *Chin. J. Struct. Chem.*, 2015, **34**, 117-122.
- 29. Z.-H. Zhang and M. Du, *CrystEngComm*, 2008, **10**, 1350-1357.
- 30. R. Ding, P. Yan, G. Hou, P. Chen, Y. Wang and G. Li, *Synth. Met.*, 2012, **162**, 1894-1897.

- 31. S. Gao, R. Q. Fan, X. M. Wang, L. S. Qiang, L. G. Wei, P. Wang, H. J. Zhang, Y. L. Yang and Y. L. Wang, *J. Mater. Chem. A*, 2015, **3**, 6053-6063.
- 32. T. Yu, S. Wang, X. Li, X. Gao, C. Zhou, J. Cheng, B. Li, J. Li, J. Chang, H. Hou and Z. Liu, *CrystEngComm*, 2016, **18**, 1350-1362.
- 33. J.-W. Zhang, R.-J. Zhang, Y. Man, B.-Q. Liu and Y.-P. Dong, *J. Mol. Struct.*, 2019, **1185**, 276-280.
- 34. C.-D. Wu, P. Ayyappan, O. R. Evans and W. Lin, *Cryst. Growth Des.*, 2007, **7**, 1690-1694.
- 35. B. Wei, D. Xu, Z. Y. Yang, F. Sun, X. Q. Gu, C. Y. Sun, F. Y. Guo, Q. Y. Li and G. W. Yang, *J. Inorg. Organomet. Polym. Mater.*, 2017, **27**, 131-137.
- 36. L. Shen, Y. Bai, Y.-T. Min, T.-T. Jia, Q. Wu, J. Wang, F. Geng, H.-J. Cheng, D.-R. Zhu, J. Yang and G.-W. Yang, *J. Solid State Chem.*, 2016, **244**, 129-139.
- 37. H. Zhou, M. Li, D. Li, J. Zhang and X. Chen, *Sci. China: Chem.*, 2014, **57**, 365-370.
- 38. F. Guo, Z. Kristallogr. New Cryst. Struct., 2010, 636, 857-860.
- 39. T. Liu, D. Luo, D. Xu, K. Wang and Z. Lin, *Inorg. Chem. Commun.*, 2014, **48**, 136-139.
- 40. G. Wang, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2013, 43, 1311-1314.
- 41. H.-L. Zhou, R.-B. Lin, C.-T. He, Y.-B. Zhang, N. Feng, Q. Wang, F. Deng, J.-P. Zhang and X.-M. Chen, *Nat. Commun.*, 2013, **4**, 2534.
- 42. X. Chen, M.-X. Zhang, K.-L. Huang, F. Xiao and X.-P. Zhang, *Chin. J. Inorg. Chem.*, 2014, **33**, 1836-1842.
- 43. J.-Z. Gu, Z.-Q. Gao, D.-Y. Lv and W. Dou, J. Chem. Crystallogr., 2012, 42, 205-209.
- 44. W. Lin, M. E. Chapman, Z. Wang and G. T. Yee, *Inorg. Chem.*, 2000, **39**, 4169-4173.
- 45. X.-Y. Tian, H.-L. Zhou, X.-W. Zhang, C. Wang, Z.-H. Qiu, D.-D. Zhou and J.-P. Zhang, *Inorg. Chem.*, 2020, **59**, 6047-6052.
- 46. C.-P. Li, J. Chen, P.-W. Liu and M. Du, *CrystEngComm*, 2013, **15**, 9713-9721.
- 47. L.-N. Wang, L. Fu, J.-W. Zhu, Y. Xu, M. Zhang, Q. You, P. Wang and J. Qin, *Acta Chim. Slov.*, 2017, **64**, 6.
- 48. M. Chen, S.-S. Chen, T.-a. Okamura, Z. Su, M.-S. Chen, Y. Zhao, W.-Y. Sun and N. Ueyama, *Cryst. Growth Des.*, 2011, **11**, 1901-1912.
- 49. Y. J. Lee and S. W. Lee, *Polyhedron*, 2013, **53**, 103-112.
- 50. M. B. Cingi, A. g. Manfredotti, C. Guastini and A. Musatti, *Gazz. Chim. Ital.*, 1975, **105**, 117.
- 51. Z. R.-s. XU Xiao-yu, SONG Jiang-feng and X. Ji-qing, *Chem. Res. Chin. Univ.*, 2009, **25**, 279-281.
- 52. H. Sadeghzadeh and A. Morsali, *Ultrason. Sonochem.*, 2011, **18**, 80-84.
- 53. A. Rana, M. Bera, D. S. Chowdhuri, D. Hazari, R. J. Butcher and S. Dalai, *J. Inorg. Organomet. Polym. Mater.*, 2011, **21**, 747-753.
- 54. S. E.-d. H. Etaiw, D. M. Abd El-Aziz, H. Marie and E. Ali, *Solid State Sci.*, 2018, **79**, 15-22.
- 55. X.-S. Wu, Y.-R. Tang, J.-L. Liu, L. Wang and X.-M. Ren, *Dalton Trans.*, 2019, **48**, 13841-13849.
- 56. L. Yi and F. Guo, *Aust. J. Chem.*, 2020, **73**, 21-29.
- 57. X. Li, R. Cao, Y. Sun, W. Bi, X. Li and Y. Wang, *Eur. J. Inorg. Chem.*, 2005, **2005**, 321-329.
- 58. L.-X. Xie, X.-F. Zheng, H. Su and Q. Jin, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, 2009, **65**, m1414.
- 59. D.-S. Liu, W.-T. Chen, Y.-P. Xu, P. Shen, S.-J. Hu and Y. Sui, *J. Solid State Chem.*, 2015, **226**, 186-191.
- 60. T. Yan, L. Du, L. Sun, X.-F. Zhang, T. Wang, J. Feng, J. Zhou and Q.-H. Zhao, *RSC Adv.*, 2017, **7**, 50150-50155.
- 61. B.-W. Hu, X.-Y. Zheng and C. Ding, J. Solid State Chem., 2015, 232, 62-66.
- 62. J. Chen, S.-H. Wang, Z.-F. Liu, M.-F. Wu, Y. Xiao, R. Li, F.-K. Zheng and G.-C. Guo, *Inorg. Chem. Commun.*, 2014, **46**, 207-211.
- 63. S.-J. Li, W.-D. Song, D.-L. Miao and D.-Y. Ma, *Chin. J. Struct. Chem.*, 2011, **30**, 1049-1053.
- 64. Z. Li, G. Zhang, T. Zhang, J. Zhang, L. Yang, Z. Zhou, S. Qi, K. Yu, F. Zhao, J. Yi, S. Xu and H. Gao, *Acta Chim. Sinica*, 2011, **69**, 1253-1258.

- 65. J. Li, G. Zhang, Y.-T. Li, X. Wang, J.-Q. Zhu and Y.-Q. Tian, *Open J. Inorg. Chem.*, 2012, **2**, 58-66.
- 66. A. A. García-Valdivia, E. Echenique-Errandonea, G. B. Ramírez-Rodríguez, J. M. Delgado-López, B. Fernández, S. Rojas, J. Cepeda and A. Rodríguez-Diéguez, *Inorganics*, 2021, **9**, 20.
- 67. Q. Y. Li, H. Tian, X. Y. Li, J. H. Zou, G. D. Mei, L. J. Qiu, B. Wei and G. W. Yang, *RSC Adv.*, 2015, **5**, 43741-43749.
- 68. G. W. Yang, Y. T. Zhang, Q. Wu, M. J. Cao, J. Wu, Q. Y. Yue and Q. Y. Li, *Inorg. Chim. Acta*, 2016, **450**, 364-371.
- 69. P. P. Sun, J. F. Dong, Y. Wang, Y. J. Liu, F. Sun, J. W. Yuan, G. W. Yang and Q. Li, *Inorg. Chem. Commun.*, 2016, **73**, 77-79.
- 70. L. Shen, M. J. Cao, F. F. Zhang, Q. Wu, L. Y. Zhao, Y. M. Lu, Q. Y. Li, G. W. Yang, B. Wei and J. H. Zou, *Transition Met. Chem.*, 2016, **41**, 125-131.
- 71. X.-J. Jiang, M. Du, Y. Sun, J.-H. Guo and J.-S. Li, J. Solid State Chem., 2009, **182**, 3211-3214.
- 72. L. Tang, Y.-P. Wu, F. Fu, Q.-B. Wei and Q.-R. Lui, *Chin. J. Inorg. Chem.*, 2011, **27**, 2287-2290.
- 73. C. Lin, W. Yu-Ling, L. Qing-Yan and Y. Yang, *Chin. J. Struct. Chem.*, 2016, **35**, 615-620.
- 74. B. Xu, Z. Guo, H. Yang, G. Li, T. Liu and R. Cao, *J. Mol. Struct.*, 2009, **922**, 140-143.
- 75. Y.-M. Song, R. Shi, X.-S. Wang, H. Zhao and R.-G. Xiong, *Appl. Organomet. Chem.*, 2005, **19**, 173-174.
- 76. Q.-X. Zhou, H.-F. Wang, X.-Q. Zhao, L. Yue and Y.-J. Wang, *Mater. Mech. Eng.*, 2004, **28**, 36-38.
- 77. W.-X. Yu, S.-F. Zhang and H.-B. Song, J. Synth. Cryst., 2004, **33**, 384-387.
- 78. W.-W. Sun, C.-Y. Tian, Q. Yue and E.-Q. Gao, J. Mol. Struct., 2009, **920**, 189-195.
- 79. K. C. Mondal, O. Sengupta, M. Nethaji and P. S. Mukherjee, *Dalton Trans.*, 2008, 767-775.
- 80. Y. Zhou, W. Xu, M. Wu, A. Lan, L. Zhang, R. Feng, F. Jiang and M. Hong, *Inorg. Chem. Commun.*, 2012, **15**, 140-145.
- 81. M. Du, X.-J. Zhao and Y. Wang, *Dalton Trans.*, 2004, 2065-2072.
- 82. F. Guo, C. Su, Y. Fan and W. Fu, J. Solid State Chem., 2019, **277**, 83-92.
- 83. C. Miao, J. Mol. Struct., 2019, **1193**, 286-293.
- 84. R. Wang, D. Yuan, F. Jiang, L. Han, S. Gao and M. Hong, *Eur. J. Inorg. Chem.*, 2006, **2006**, 1649-1656.
- 85. A.-Z. Tan, Y.-H. Wei, Z.-L. Chen, F.-P. Liang and R.-X. Hu, *Chin.J.Inorg.Chem.*, 2006, **22**, 394-398.
- 86. Y.-H. Wei, A.-Z. Tan, Z.-L. Chen and R.-X. Hu, *Struct. Chem.*, 2006, **25**, 343-347.
- 87. M. K. Khosa, P. T. Wood, S. M. Humphrey and W. T. A. Harrison, *J. Struct. Chem.*, 2015, **56**, 1130-1135.
- 88. M. K. Khosa, P. T. Wood, S. M. Humphrey and W. T. A. Harrison, *Acta Crystallogr., Sect. E: Crystallogr. Commun.*, 2020, **76**, 909-913.
- 89. H.-Y. Lee, J. W. Kampf, K. S. Park and E. N. G. Marsh, *Cryst. Growth Des.*, 2008, **8**, 296-303.
- 90. Y.-T. Wang, G.-M. Tang and D.-W. Qin, Aust. J. Chem., 2006, **59**, 647-652.
- 91. Y.-T. Wang, G.-M. Tang, Y. Wu, X.-Y. Qin and D.-W. Qin, J. Mol. Struct., 2007, 831, 61-68.
- 92. Y.-T. Wang, R.-S. Xin and J.-G. Wang, Z. Kristallogr. New Cryst. Struct., 2009, **224**, 487-488.
- 93. B.-W. Hu, J.-P. Zhao, Q. Yang, T.-L. Hu, W.-P. Du and X.-H. Bu, *J. Solid State Chem.*, 2009, **182**, 2918-2923.
- 94. Y.-T. Wang, G.-M. Tang, Y.-C. Zhang, W.-Z. Wan, J.-C. Yu, T.-D. Li and Y.-Z. Cui, *J. Coord. Chem.*, 2010, **63**, 1504-1513.
- 95. H.-X. Chen, X.-P. Xu, Q.-F. Xu, Y. Zhang, H. Li, N.-J. Li, B. Wu and J.-M. Lu, *Polyhedron*, 2012, **41**, 77-85.
- 96. P. Liu, C.-C. Cao, Y.-P. Liang and Z.-S. Wu, *Chin. J. Inorg. Chem.*, 2010, **26**, 2057-2062.
- 97. G. Zhang, S.-Y. Yao, D.-W. Guo and Y.-Q. Tian, *Cryst. Growth Des.*, 2010, **10**, 2355-2359.
- 98. X.-Y. Zhou, Y.-Q. Huang and W.-Y. Sun, *Inorg. Chim. Acta*, 2009, **362**, 1399-1404.
- 99. X. Qian, P.-P. Sun, J.-G. Ding, B.-L. Li and H.-Y. Li, J. Mol. Struct., 2013, **1031**, 175-179.

- 100. W.-F. Zhu and X. Zhu, Z. Kristallogr. New Cryst. Struct., 2014, **229**, 289-290.
- 101. S. V. Voitekhovich, T. V. Serebryanskaya, P. N. Gaponik, L. S. Ivashkevich, A. S. Lyakhov and O. A. Ivashkevich, *Inorg. Chem. Commun.*, 2010, **13**, 949-951.
- 102. G. W. Yang, F. F. Zhang, Q. Wu, M. J. Cao, Y. Bai, Q. Y. Li, B. Wei and J. H. Zou, *RSC Adv.*, 2015, **5**, 84439-84445.
- 103. J.-H. Zou, D.-L. Zhu, H. Tian, F. F. Li, F. F. Zhang, G.-W. Yang, Q.-Y. Li and Y. X. Miao, *Inorg. Chim. Acta*, 2014, **423**, 87-94.
- 104. R. C. Severance, A. M. Patel, M. D. Smith and H.-C. zur Loye, *J. Chem. Crystallogr.*, 2012, **42**, 258-262.
- 105. S.-Q. Deng, X.-J. Mo, Y. Feng, S.-L. Cai, W.-G. Zhang and S.-R. Zheng, *CrystEngComm*, 2018, **20**, 5531-5543.
- 106. P. Yang, M.-S. Wang, J.-J. Shen, M.-X. Li, Z.-X. Wang, M. Shao and X. He, *Dalton Trans.*, 2014, **43**, 1460-1470.
- 107. M. Dan and C. N. R. Rao, *Chem. Eur. J.*, 2005, **11**, 7102-7109.
- 108. C. S. Hawes, A. D. Lynes, K. Byrne, W. Schmitt, G. Ryan, M. E. Möbius and T. Gunnlaugsson, *Chem. Commun.*, 2017, **53**, 5989-5992.
- 109. O. T. Qazvini, R. Babarao and S. G. Telfer, *Nat. Commun.*, 2021, **12**, 197.
- 110. C.-B. Tian, C. He, Y.-H. Han, Q. Wei, Q.-P. Li, P. Lin and S.-W. Du, *Inorg. Chem.*, 2015, **54**, 2560-2571.
- 111. E. Tang, Y.-M. Dai, J. Zhang, Z.-J. Li, Y.-G. Yao, J. Zhang and X.-D. Huang, *Inorg. Chem.*, 2006, **45**, 6276-6281.
- 112. L. Qin, Q. Hu, Y. Wu, J.-L. Cai and Y.-Y. Li, *CrystEngComm*, 2018, **20**, 4042-4048.
- 113. J.-Y. Wu, P.-T. Yuan, C.-C. Hsiao, H.-K. Chang, Y.-C. Liu, L.-J. Hsu and M.-H. Chiang, J. Solid State Chem., 2019, **277**, 701-712.
- 114. Y.-Z. Zheng, W. Xue, M.-L. Tong, X.-M. Chen, F. Grandjean and G. J. Long, *Inorg. Chem.*, 2008, **47**, 4077-4087.