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1.1 Materials

Oleic acid (C;3H340,, AR) and Cerium (III) chloride heptahydrate (CeCl;-7H,0, 99.9% metals basis) were
purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Ethanol absolute
(C,H40, AR), calcium chloride anhydrous (CaCl,, AR), sodium hydroxide (NaOH, AR) and sodium dihydrogen
phosphate dihydrate (NaH,PO,-2H,0, AR) were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Ultrapure water was used in throughout the experiments. All reagents were used without
further purification.
1.2 Characterization

The phase constituents of the as-prepared products were identified by an X-ray diffractometer (XRD, Ultima
IV, RIGAKU, Japan) with a Cu Ka radiation source (A = 1.5418 A). The full width at half-maximum (FWHM)
values and lattice parameters were obtained in Jade 6 software. The chemical compositions of the products were
characterized using Fourier transform infrared spectroscopy (FTIR, Nexus 670, Thermo Nicolet, USA) with a
resolution of 4 cm!. The binding energies were collected by X-ray photoelectron spectroscopy (XPS, AXIS
Supra, Shimadzu, Japan) using monochromatic Al-Ka radiation (600 W). The prominent Cls peak (284.8 ¢V)
was used to calibrate the survey and high-resolution scans of Ce3d. All XPS spectra were analyzed by the
Thermo Avantage software. The surface morphologies and element distribution of the samples were obtained
using field-emission scanning electron microscope (FESEM, JSM-7800F, JEOL, Japan) equipped with an
energy dispersive spectrometer (EDS, X-max 80, Oxford Instruments, UK). The high-resolution TEM
(HRTEM) images and selected area electron diffraction (SAED) pattern of the 6CeHANF sample were explored
by a field-emission transmission electron microscope (TEM, JEM-2100, JEOL, Japan).

The crystallite sizes (D;,) of the as-prepared products were calculated by “Debey-Scherrer equation”!-2. The



degree of crystallinity (X¢) was calculated using’:

V112/300

XC=(1— )xlOO%

300

where V7,500 was the intensity of the hollow between the (112) and (300) diffraction peaks and /39y was the
intensity of the (300) diffraction peak.
References
1. U. Holzwarth and N. Gibson, Nature Nanotechnology, 2011, 6, 534.
2. M. Ghiyasiyan-Arani, M. Salavati-Niasari and S. Naseh, Ultrasonics Sonochemistry, 2017, 39,
494-503.

3. E. Landi, A. Tampieri, G. Celotti and S. Sprio, J. Eur. Ceram. Soc., 2000, 20, 2377-2387.



Table S1. Summary of characteristics of the as-prepared samples synthesized with different Ce doping ratios.

Theoretical Ce/(Cet+Ca) of the (Cet+Ca)/P ofthe  Crystallinity  Lattice parameter
sample Ce/(Ce+Ca) (at.%) product (at.%) product (%) a(A) c(A)
0CeHANF 0 0 1.32 85.39 9.2228  7.1582
2CeHANF 2 7.60 1.21 95.94 9.2921  7.0286
4CeHANF 4 9.02 1.07 95.27 9.3685 7.0198
6CeHANF 6 14.27 1.05 92.12 9.3522  6.8836
8CeHANF 8 23.36 0.98 91.64 93613  6.8457
Note: Ce/(Ce+Ca) and (Ce+Ca)/P of the product were calculated based on their corresponding XPS data.
Table S2. XPS peak positions of Ce3d from the as-prepared products synthesized with different Ce doping ratios.
Ce3t Cett
Sample
3ds 3dsp 3dsp 3dsp
2CeHANF 880.98 88523 8§899.00 903.85 883.08 887.17 899.98 901.80 906.07 917.58
4CeHANF 881.36 885.45 899.42 903.92 883.29 887.35 90042 901.79 906.23 918.02
6CeHANF 881.23 885.47 899.04 904.05 883.63 887.44 900.50 902.21 906.34 918.10
8CeHANF 881.01 885.38 898.84 904.18 883.04 887.60 900.02 901.76 906.50 917.62
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Figure S1. XPS high-resolution spectra of Ols, Ca2p, P2p of different samples. (a) 0CeHANTF, (b)
2CeHANF, (c) 4CeHANF, (d) 6CeHANF, and (e) 8CeHANF.
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