C-H hydrogen bond and halogen bond directed self-assembly of ethereal podands and C-X…F⁻/HF₂⁻ halogen bonding in solution

Dipjyoti Dutta,^a Anamika Gogoi,^a Rupjyoti Dutta,^{a,b} Sarvesh S. Harmalkar,^{c,d} Prem Lama,^{*b,e} Sandeep Kumar Dey,^{*a,b}

^aMaterials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India. Email: sandeep@neist.res.in

^bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.

^cSchool of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India.

^dDepartment of Chemistry, Government College Khandola, Goa 403107, India.

^eDistillate and Heavy Oil Processing Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India. Email: <u>prem.lama@iip.res.in</u>

SI. No.	Headings	Page No.
1	Materials and experimental methods	1
2	Characterization of podands by NMR spectroscopy	2-10
3	X-ray diffraction studies of podand crystals	11-16
4	Thermogravimetry analysis of crystals	17-19
5	Hirshfeld surface analysis fingerprint plots	20-31
6	C-X…F ⁻ and C-X…F ⁻ …H-F halogen bonding in solution (X = I/Br)	32-37

1. Materials and experimental methods

All reagents and solvents were obtained from commercial sources and used as received without further purification. Mesitylene, paraformaldehyde, 4-halophenols, 2-halophenols, 2,4-dihalophenols, 4-cyanophenol and quaternary ammonium salts were purchased from either Sigma-Aldrich or Alfa-Aesar chemicals. Solvents (analytical grade), glacial acetic acid and hydrobromic acid for synthesis and crystallization experiments were purchased from CDH chemicals (India) and used without further purification.

¹H-NMR and ¹⁹F-NMR spectra were recorded on a Bruker Advance FT-400 MHz instrument and chemical shifts were recorded in parts per million (ppm) on the scale using the residual solvent peak as a reference and ¹³C spectra were obtained at 100 MHz at 298 K. Powder X-ray diffraction patterns of dried crystalline powder were recorded using a Bruker-D8 Advance X-ray diffractometer with Cu- K_{α} radiation at λ = 0.15418 nm. Bruker D8 Quest ECO single crystal X-ray diffractometer was used for data collection at 298 K. Thermogravimetric analysis was carried out using an FTA 449 F3 Jupiter instrument under nitrogen atmosphere.

Fig. S1. ¹H-NMR spectrum of P1 in DMSO-D₆.

Fig. S2. ¹³C-NMR spectrum of P1 in DMSO-D₆.

Fig. S4. ¹H-NMR spectrum of P2 in DMSO-D₆.

Fig. S6. ¹H-NMR spectrum of P5 in DMSO-D₆.

Fig. S8. ¹H-NMR spectrum of P6 in DMSO-D₆.

Fig. S10. ¹H-NMR spectrum of P7 in DMSO-D₆.

Fig. S11. ¹⁹F-NMR spectrum of P7 in DMSO-D₆.

Fig. S12. ¹³C-NMR spectrum of P7 in DMSO-D₆.

Fig. S14. ¹⁹F-NMR spectrum of P8 in DMSO-D₆.

Fig. S16. ¹H-NMR spectrum of P9 in DMSO-D₆.

Fig. S17. ¹³C-NMR spectrum of P9 in DMSO-D₆.

3. X-ray diffraction studies of podand crystals

Fig. S18. Asymmetric unit of the single crystal X-ray structure of P2.

Fig. S19. (a) Simulated powder X-ray diffraction patterns of **P2**, and (b) experimental powder X-ray diffraction patterns of the bulk crystals of **P2** after drying.

Fig. S20. Asymmetric unit of the single crystal X-ray structure of $[P3 \cdot (CH_3)_2CO]$.

Fig. S21. (a) Simulated powder X-ray diffraction patterns of $[P3 \cdot (CH_3)_2CO]$, and (b) experimental powder X-ray diffraction patterns of the bulk crystals of $[P3 \cdot (CH_3)_2CO]$ after drying.

Fig. S22. Asymmetric unit of the single crystal X-ray structure of [P4·solvent].

Fig. S23. (a) Simulated powder X-ray diffraction patterns of [**P4**·solvent], and (b) experimental powder X-ray diffraction patterns of [**P4**·solvent] after drying.

Fig. S24. Asymmetric unit of the single crystal X-ray structure of [P9·solvent].

Fig. S25. (a) Simulated powder X-ray diffraction patterns of [**P9**·solvent], and (b) experimental powder X-ray diffraction patterns of [**P9**·solvent] after drying.

Fig. S26. (a) Experimental powder X-ray diffraction patterns of **P5** crystals obtained from acetone, (b) experimental powder X-ray diffraction patterns of **P6** crystals obtained from acetone.

Podands	C-H···A (A = acceptor)	C…A (Å)	H…A (Å)	<c-h…a (°)<="" td=""></c-h…a>
P2	C22-H22B…O2	3.506(3)	2.66	145
	С28-Н…О2	3.679(3)	2.78	161
	C22-H22A…π (mesitylene)	3.550	2.81	133
	C3-H3…π (PhCl3)	3.581	2.71	155
	C15-H15···π (mesitylene)	3.495	2.58	166
	C30-H30B…π (PhCl3)	4.130	3.20	162
[P3 ·(CH ₃) ₂ CO]	C24-H24B…O1	3.587(1)	2.70	150
	C26-H26…O1	3.721(1)	2.81	165
	C24-H24A…π (mesitylene)	3.539	2.86	127
	C19-H19…π (PhBr3)	3.659	2.84	146
	C2-H2…π (mesitylene)	3.554	2.67	158
	C13-H13C…π (PhBr3)	3.681	2.87	141
	C23-H23···Br3	3.855	3.11	138
[P4·solvent]	C10-H10A…O2	3.572(1)	2.69	151
	C12-H12···O2	3.716(1)	2.82	161
	C10-H10A…π (mesitylene)	3.530	2.86	127
	C30-H30…π (PhI1)	3.684	2.85	149
	C20-H20···π (mesitylene)	3.711	2.84	156
	C8-H8A…π (PhI1)	4.015	3.31	131
	C26-H26…I1	3.881	3.12	140
[P9·solvent]	C14-H14C…O1	3.544(5)	2.65	153
	C17-H17A…N1	3.392(2)	2.43	175
	C28-H28…N2	3.602(2)	2.68	172
	C14-H14B…N3	3.555(2)	2.69	151
	C23-H23···C33 (-CN)	3.654(2)	2.85	145

Table S1. C-H hydrogen bond parameters observed in the crystal structures of ethereal podands.

Fig. S27. Thermogravimetric analysis of the crystals of P1 obtained from acetone.

Fig. S28. Thermogravimetric analysis of the crystals of P2 obtained from acetone-ethanol solvents (2:1, v/v).

Fig. S29. Thermogravimetric analysis of the crystals of $[P3 \cdot (CH_3)_2 CO]$ obtained from acetone-ethanol (2:1, v/v).

Fig. S30. Thermogravimetric analysis of the crystals of [P4·0.5(DMF-H₂O)] obtained from acetone-DMF (2:1, v/v).

Fig. S31. Thermogravimetric analysis of the crystals of [P9·solvent] obtained from acetone-acetonitrile solution.

5. Hirshfeld surface analysis fingerprint plots

Fig. S32. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···H close contacts in the crystal structure of **P2**.

Fig. S33. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···C close contacts in the crystal structure of **P2**.

Fig. S34. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···Cl close contacts in the crystal structure of **P2**.

Fig. S35. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···O close contacts in the crystal structure of **P2**.

Fig. S36. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from Cl···C close contacts in the crystal structure of **P2**.

Fig. S37. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from Cl···Cl close contacts in the crystal structure of **P2**.

Fig. S38. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from C···C close contacts in the crystal structure of **P2**.

Fig. S39. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···H close contacts in the crystal structure of [**P3**·(CH₃)₂CO].

Fig. S40. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···C close contacts in the crystal structure of [**P3**·(CH₃)₂CO].

Fig. S41. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···Br close contacts in the crystal structure of [**P3**·(CH₃)₂CO].

Fig. S42. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···O close contacts in the crystal structure of [**P3**·(CH₃)₂CO].

Fig. S43. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from Br···C close contacts in the crystal structure of [**P3**·(CH₃)₂CO].

Fig. S44. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from Br…Br close contacts in the crystal structure of $[P3 \cdot (CH_3)_2 CO]$.

Fig. S45. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···H close contacts in the crystal structure of **P4**.

Fig. S46. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···C close contacts in the crystal structure of **P4**.

Fig. S47. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···I close contacts in the crystal structure of **P4**.

Fig. S48. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···O close contacts in the crystal structure of **P4**.

Fig. S49. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from C···I close contacts in the crystal structure of **P4**.

Fig. S50. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from I···I close contacts in the crystal structure of **P4**.

Fig. S51. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···H close contacts in the crystal structure of **P9**.

Fig. S52. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···O close contacts in the crystal structure of **P9**.

Fig. S53. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···N close contacts in the crystal structure of **P9**.

Fig. S54. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from H···C close contacts in the crystal structure of **P9**.

Fig. S55. Hirshfeld surface generated 2D fingerprint plot highlighting the relative contribution from C···C close contacts in the crystal structure of **P9**.

6. C-X…F⁻ and C-X…F⁻…H-F halogen bonding in solution (X = I/Br)

Fig. S57. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of equivalent amount of **P5** using $(n-Bu)_4N^+PF_6^-$ as a reference in DMSO-D₆. Fluoride signal appeared at -104.4 ppm.

Fig. S58. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of equivalent amount of **P6** using $(n-Bu)_4N^+PF_6^-$ as a reference in DMSO-D₆. Fluoride signal appeared at -104.4 ppm.

Fig. S59. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of equivalent amount of **P7** using $(n-Bu)_4N^+PF_6^-$ as a reference in DMSO-D₆. Fluoride signal appeared at –109.3 ppm and podand signal at –121.5 ppm.

Fig. S60. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of equivalent amount of **P8** using $(n-Bu)_4N^+PF_6^-$ as a reference in DMSO-D₆. Fluoride signal appeared at -106.3 ppm and podand signal at -131.4 ppm.

Fig. S61. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of trifluoroacetic acid (10 equiv.) showing the in-situ formation of hydrogen bifluoride, HF_2^- signal at –147.6 ppm in DMSO-D₆.

Fig. S62. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of equivalent amount of **P6** and 10 equiv. trifluoroacetic acid (reference) in DMSO-D₆. Hydrogen bifluoride signal appeared at -170.1 ppm.

Fig. S63. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of equivalent amount of **P7** and 10 equiv. trifluoroacetic acid (reference) in DMSO-D₆. Hydrogen bifluoride signal appeared at –169.0 ppm.

Fig. S64. ¹⁹F NMR spectrum of $(Et)_4N^+F^-$ in the presence of equivalent amount of **P8** and 10 equiv. trifluoroacetic acid (reference) in DMSO-D₆. Hydrogen bifluoride signal appeared at -166.2 ppm.

Fig. S65. ¹⁹F NMR spectrum of $(n-Bu)_4N^+HF_2^-$ (HF₂⁻ signal –149.6) using hexafluoro-benzene a reference (C₆F₆ signal –164.0).

Fig. S66. ¹⁹F NMR spectrum of $(n-Bu)_4N^+F^-$ in the presence of equivalent amount of **P5** and 10 equiv. trifluoroacetic acid (reference) in DMSO-D₆. Hydrogen bifluoride signal appeared at -169.2 ppm.

Fig. S67. ¹⁹F NMR spectrum of $(n-Bu)_4N^+F^-$ in the presence of equivalent amount of **P5** and 10 equiv. trifluoroacetic acid (reference) in DMSO-D₆. Hydrogen bifluoride signal appeared at -169.2 ppm.