Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting information

Experimental Section

Synthesis.

4CB: To a dichloromethane solution (3ml) of 4-chlorosalicylaldehyde (2.04 mmol, 320 mg), 4bromoaniline (356 mg, 2.07 mmol) was added and stirred for 5 hours. To remove water in the mother liquid, dehydrated sodium sulfate was added and filtered off. Methanol was added and the solution was stored in refrigerator for a day. Yellow crystals were collected by filtration, and dried under reduced pressure. Yield: 523 mg (84%).

4BB, **4BC**: To a methanolic solution (5ml) of 4-bromosalicylaldehyde (1.00 mmol, 201 mg), 4bromoaniline (1.01 mmol, 173 mg) or 4-chloroaniline (1.00 mmol, 128mg) was added, and stored for a day. Yellow crystals were collected by filtration, and dried under reduced pressure. Yield: **4BB**: 323 mg, (91%), **4BC**: 278 mg (90 %).

4BB: Elemental Analysis for C₁₃H₉Br₂NO: Calcd. C, 43.98; H, 2.56; N, 3.95. Found: C, 44.16; H, 2.34; N, 4.10. FAB MS(+) m/z 354.0, 356.1, 358.1 (calcd. 353.9, 355.9, 357.9 for M + H⁺). ¹H NMR (CDCl₃): δ 7.09 (1H, dd, J = 8.2, 1.8 Hz, ArH), 7.16(2H, m, ArH), 7.22 (1H, d, J = 1.8 Hz, ArH), 7.24 (1H, d, J = 8.2Hz, ArH), 7.55 (2H, m, ArH), 8.57 (1H, s, N=CH-), 13.28 (1H, br, OH), ¹³C NMR (CDCl₃): δ = 118.1, 120.8, 120.9, 122.8, 122.9, 127.9, 132.7, 133.4, 147.2, 161.9, 162.2.

4BC: Elemental Analysis for C₁₃H₉BrClNO: Calcd. C, 50.28; H, 2.92; N, 4.51. Found: C, 50.26; H, 2.85; N, 4.63. FAB MS(+) m/z 310.2, 312.1 (calcd. 310.0, 312.0 for M + H⁺). ¹H NMR (CDCl₃): δ 7.09 (1H, dd, J = 8.2, 1.8 Hz, AH), 7.2-7.26 (3H, m, ArH), 7.16 (2H, m, ArH), 7.32 (1H, d, J = 8.2 Hz, ArH), 7.40 (2H, m, ArH), 8.56 (1H, s, N=CH-), 13.30 (1H, br, OH), ¹³C NMR (CDCl₃): δ = 118.1, 120.8, 122.6, 122.8, 127.9, 129.8, 133.0, 133.4, 146.7, 161.9, 162.2.

4CB: Elemental Analysis for C₁₃H₉BrClNO: Calcd. C, 50.28; H, 2.92; N, 4.51. Found: C, 50.17; H, 2.85; N, 4.64. FAB MS(+) m/z 310.1, 312.1 (calcd. 310.0, 312.0 for M + H⁺). ¹H NMR (CDCl₃): δ 6.93 (1H, dd, J = 8.3, 1.9 Hz, A-H), 7.04 (1H, d, J = 1.9 Hz, ArH), 7.16 (2H, m, ArH), 7.32 (1H, d, J = 8.2 Hz, ArH), 7.55 (2H, m, ArH), 8.57 (1H, s, N=CH-), 13.31 (1H, br, OH), ¹³C NMR (CDCl₃): δ = 117.8, 117.8, 119.9, 120.8, 122.9, 132.7, 133.3, 139.4, 147.2, 162.0, 162.1.

	m-4BB	o1-4BB	02-4BB	4BC	4CB	$4CC\text{-}y^{\dagger}$	$4CC-o^{\dagger}$
crystal habit	plate	plate	plate	plate	plate	plate	plate
crystal color	yellow	yellow	yellow	yellow	yellow	yellow	orange
crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic	orthorhombic	monoclinic	monoclinic
space group	I2/a	$Pca2_1$	Pccn	$P2_{1}/c$	Pccn	<i>I</i> 2/ <i>c</i>	$P2_{1}/c$
<i>a</i> / Å	6.1745(3)	6.0569(1)	56.5791(10)	27.8584(9)	55.8702(10)	6.140(5)	10.004(6)
b / Å	6.8716(3)	6.9330(1)	6.8940(1)	6.8627(3)	6.9161(2)	6.848(6)	4.688(3)
<i>c</i> / Å	28.3078(12)	28.5038(3)	6.1018(1)	6.1547(2)	6.1083(1)	27.39(2)	11.919(7)
eta / °	96.189(4)	90	90	95.840(3)	90	95.26(2)	93.2393(10)
V / Å3	1194.06(9)	1196.95(3)	2380.05(7)	1170.57(7)	2360.27(9)	1146.8(16)	558.1(6)
$D_{ m calcd}$	1.975	1.970	1.982	1.762	1.748	1.541	1.584
Ζ	4	4	8	4	8	4	2
Z'	0.5	1	1	1	1	0.5	0.5
T / K	93	93	103*	93	153*	93	93
R	0.0410	0.0306	0.054	0.0662	0.1145	0.0447	0.0504
$R_{ m w}$	0.0958	0.0843	0.1194	0.1299	0.2599	0.1002	0.1208

 Table S1 Crystallographic parameters of 4XY

†: ref. 1, *: due to a temperature controller condition, we could not collect the data at 93K.

 Table S2 Geometric parameters of 4XY crystals

Tuble 52 Geometric parameters of 1711 orystans						
	C-O (Å)	C=N (Å)	φ_1 (°)	φ_2 (°)	heta (°)	
m-4BB	1.356(6)	1.29(2)	4(3)	39(2)	45.91	
o ₁ -4BB	1.340(9)	1.29(1)	-8(1)	-36(1)	46.82	
o ₂ -4BB	1.352(8)	1.277(8)	-7.9(9)	-35.8(9)	46.08	
$4BC^{\dagger}$	1.358(6)	1.28(1)	-10(2)	-33(1)	45.91	
4CB	1.36(1)	1.28(1)	7(2)	35(2)	46.31	
4CC-Y	1.368(4)	1.28(1)	-7.8(9)	-35.0(8)	46.13	
4CC-O	1.310(6)	1.27(2)	2(2)	-4(2)	0	

 φ_1 : dihedral angle of C₂·-C₁·-C=N, φ_2 : dihedral angle of C₂-C₁-N=C (Aniline side), θ : angles between the normal vectors of two benzene rings, [†]: major part

	5BB	5BC	5CB	5CC-y	5CC-o	
crystal system	orthorhombic	monoclinic	orthorhombic	monoclinic	monoclinic	
space group	Pccn	$P2_{1}/c$	Pccn	$P2_{1}/c$	$P2_{1}/c$	
<i>a</i> / Å	56.4542(12)	27.652(11)	6.9964(15)	27.419(7)	20.427(6)	
b / Å	6.9020(2)	7.011(3)	55.786(12)	6.901(2)	4.5728(13)	
c / Å	6.10530(10)	6.219(3)	6.1443(14)	6.137(1)	12.101(4)	
eta / °	90	96.38(2)	90	95.57(2)	92.301(5)	
V / Å3	2378.91(9)	1198.2(8)	2398.1(9)	1155.75	1129.4(6)	
$D_{ m calcd}$	1.983	1.722	1.72	1.529	1.565	
Ζ	8	4	8	4	4	
Z'	1	1	1	1	1	
T / K	93	296	298	190	93	
R	0.0391	0.031	0.054	0.034	0.0333	
$R_{ m w}$	0.0976	0.078	0.128	0.0905	0.083	
Reference	This work	ref. 2	ref. 3	ref. 4	ref. 1	

 Table S3 Crystallographic parameters of 5XY

 Table S4 Geometric parameters of 5XY crystals

	C-O (Å)	C=N (Å)	$arphi_1$ (°)	$arphi_2$ (°)	$ heta(^\circ)$
5BB	1.356(4)	1.293(4)	5.5(4)	36.0(4)	44.45
5BC	1.341(3)	1.274(4)	-4.6(4)	-35.6(4)	43.90
5CB	1.352(5)	1.276(5)	5.4(6)	35.8(6)	44.27
5СС-у	1.352(3)	1.280(3)	-5.4(4)	-35.9(3)	44.55
5CC-o	1.353(2)	1.287(2)	3.3(2)	-6.0(2)	2.85

 φ_1 : dihedral angle of C₂·-C₁·-C=N, φ_2 : dihedral angle of C₂-C₁-N=C (Aniline side), θ : angles between the normal vectors of two benzene rings

Figure S1 4BB crystals obtained from a mixed solution of dichloromethane and hexane. The crystals were a conglomerate of several polymorphs, all similar yellow platelets.

Figure S2 Static disorder in m-4BB. The ratio of 1:1 for opposite orientations caused pseudo 2-fold axis on the center of imine bond.

Figure S3 Crystal packing of a) 4BC (major part), b) 4CB and c) 4CC-y.

Figure S4 Type-II halogen bond network along a-axis (red) and additional type-I halogen bond along b-axis (blue) in o₁-4BB crystal.

Figure S5 Powder X-ray diffraction patterns of 4BC measured for the samples recrystallized from solution (a) and from melt (b), with simulated pattern for 4BC crystal (c).

Figure S6 Powder X-ray diffraction patterns of 4CB measured for the samples recrystallized from solution (a) and from melt (b), with simulated pattern for 4CB crystal (c).

Figure S7 Powder X-ray diffraction patterns of 4CC measured for 4CC recrystallized from solution (a) and from melt (b), with simulated pattern for 4CC-y crystal (c).

Figure S8 DSC curves of 4BB.

Figure S9 DSC curves of 4BC

Figure S10 DSC curves of 4CB

Figure S11 DSC curves of 4CC-Y. Contamination of small amount of 4CC-o caused a seed-triggered phase transition to 4CC-o below the melting point of 4CC-y in the first heating curve.

References for supporting information

- Z. Zhang, M. Suzuki, Y. Yang, I. Yoshikawa, Q. Yin, and H. Houjou, *CrystEngComm* 2020, 22, 4903–4913.
- (2) A. A. Ardakani, R. Kia, H. Kargar, and M. N. Tahir, *Acta Crystallogr. Sect. E Struct. Reports* Online 2011, **67**, 0597–0597.
- (3) X.-L., S.-S. Feng, C.-X. Yuan, and M.-L. Zhu, *Acta Crystallogr. Sect. E Struct. Reports Online* 2014, **70**, o235–o236.
- (4) J. Burgess, J. Fawcett, D. R. Russell, S. R. Gilani, and V. Palma, *Acta Crystallogr. Sect. C Cryst. Struct. Commun.* 1999, **55**, 1707–1710.