Supporting information

Linker length-dependent hydrogen peroxide photosynthesis performance over crystalline covalent organic frameworks

Tao Yang, ^a Yingchu Wang, ^a Yue Chen, ^a Xueqing Peng, ^a Hengqiang Zhang^{*b} and Aiguo Kong^{*a} ^aSchool of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.E-mail: agkong@chem.ecnu.edu.cn. ^bCollege of Chemistry and Chemical engineering, Hebei Normal University for Nationalities, Chengde 067000, P.R. China.E-mail: hqzhang@hbun.edu.cn

Figure S1. Synthetic route of COF-BPDA-DTP, COF-BPDA-BD and COF-BPDA-PA.

Figure S2. (a) The LSV curves at different rotate speeds. (b) The calculated collection efficiency (N) for RRDE

Figure S3. (a) Eclipsed (AA) stacking mode of COF-BPDA-DTP. (b) Comparison between experimental PXRD pattern and simulated pattern. White, gray, blue, and red spheres represent H, C, N, and O atoms, respectively.

Figure S4. (a) Staggered (AB) stacking mode of COF-BPDA-DTP. (b) Comparison between experimental PXRD pattern and simulated pattern. White, gray, blue, and red spheres represent H, C, N, and O atoms, respectively; the second layer is highlighted in bule for clarity.

Figure S5. (a) Eclipsed (AA) stacking mode of COF-BPDA-BD. (b) Comparison between experimental PXRD pattern and simulated pattern. White, gray, blue, and red spheres represent H, C, N, and O atoms, respectively.

Figure S6. (a) Staggered (AB) stacking mode of COF-BPDA-BD. (b) Comparison between experimental PXRD pattern and simulated pattern. White, gray, blue, and red spheres represent H, C, N, and O atoms, respectively; the second layer is highlighted in bule for clarity.

Figure S7. (a) Eclipsed (AA) stacking mode of COF-BPDA-PA. (b) Comparison between experimental PXRD pattern and simulated pattern. White, gray, blue, and red spheres represent H, C, N, and O atoms, respectively.

Figure S8. (a) Staggered (AB) stacking mode of COF-BPDA-PA. (b) Comparison between experimental PXRD pattern and simulated pattern. White, gray, blue, and red spheres represent H, C, N, and O atoms, respectively; the second layer is highlighted in bule for clarity.

Figure S9. TEM images of COF-BPDA-BD (a and b) and COF-BPDA-PA (c and d)

Figure S10. The pore size distributions of (a) COF-BPDA-DTP, (b) COF-BPDA-BD, and (c) COF-BPDA-PA.

Figure S11. FT-IR spectra of COF-BPDA-DTP, COF-BPDA-BD and COF-BPDA-PA.

Figure S12. The water contact angle of (a) COF-BPDA-DTP, (b) COF-BPDA-BD and (C) COF-BPDA-PA.

Figure S13. The time-amount curves for photocatalytic H_2O_2 production over COF-BPDA-DTP (35mg, 40 mL pure water).

Figure S14. (a) C 1s, (b) N 1s and (c) O 1s XPS spectra of COF-BPDA-DTP before and after undergoing photocatalysis.

H₂O₂ yield Irradiated Test Samples rate (µmol Solvent Ref. conditions conditions $h^{-1} g_{cat}^{-1}$) 30 mg catalysts $\lambda{>}420~nm$ 97 **CTF-BDDBN** H_2O **S**1 and 50 mL water 5 mg catalysts $\lambda{>}420~nm$ COF-TfpBpy 695 H_2O S2 and 10 mL water 50 mg catalysts $\lambda > 420 \text{ nm}$ **MRF-250** 582 H_2O S3 and 30 mL water 10 mg catalysts N₀-COF 1570 $\lambda = 495 \text{ nm}$ H_2O S4 and 20 mL water 30 mg catalysts $\lambda \!>\! 420 \ nm$ 1H-COF 700 H_2O S5 and 30 mL water 30 mg catalysts $\lambda \!>\! 420 \text{ nm}$ DE7-M 266 H_2O S6 and 50 mL water

Table S1. The comparison of H_2O_2 production rate with other reported photocatalysts without sacrificial reagents.

SonoCOF-F2	1244	3 mg catalysts	$\lambda \!>\! 420 \text{ nm}$	H ₂ O	S7
		and 5 mL			
		water			
HEP-TAPT- COF	1750	50 mg	$\lambda > 420 \text{ nm}$	H ₂ O	S8
		catalysts			
		and 100			
		mL water			
FS-COFs	3904	5 mg	$\lambda \!>\! 420 \text{ nm}$	H ₂ O	S9
		catalysts			
		and 20 mL			
		water			
TTF-BT-COF	2760	5 mg	$\lambda \!>\! 420 \text{ nm}$	H ₂ O	S10
TTF-pT-COF	996	catalysts			
TPE-BT-COF	592	and 10 mL			
		water			
COF-BPDA-	450		λ>420 nm	H ₂ O	
РА		5 mg			This work
COF-BPDA-	1040	catalysts		H ₂ O	
BD		and 40 mL			
COF-BPDA-	1164	water		H ₂ O	
DTP					

References

- L. Chen, L. Wang, Y. Wan, Y. Zhang, Z. Qi, X. Wu and H. Xu, *Adv. Mater.*, 2020, 32, e1904433.
- M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. Chen,
 Y. Zhou, K. Lei, L. Wang, W. Liu, H. Huang and T. Ma, *Angew. Chem. Int. Ed.*,
 2022, 61, e202200413.
- S3. L. Yuan, C. Zhang, J. Wang, C. Liu and C. Yu, Nano Res., 2021, 14, 3267-3273.
- S4. S. Chai, X. Chen, X. Zhang, Y. Fang, R. S. Sprick and X. Chen, *Environ. Sci.*: *Nano.*, 2022, 9, 2464-2469.
- S5. H. Acta CardiologicaHu, Y. Tao, D. Wang, C. Li, Q. Jiang, Y. Shi, J. Wang, J. Qin, S. Zhou and Y. Kong, J. Colloid Interface Sci., 2023, 629, 750-762.
- L. Liu, M. Y. Gao, H. Yang, X. Wang, X. Li and A. I. Cooper, *J. Am. Chem. Soc.*, 2021, 143, 19287-19293.
- S7. W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu, X. Zhou, R. Clowes, N. D. Browning,
 Y. Wu, J. W. Ward and A. I. Cooper, *J. Am. Chem. Soc.*, 2022, 144, 9902-9909.
- S8. D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu and L. Chen, Angew. Chem. Int. Ed., 2022, 62, e202217479.
- S9. Y. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang and B. Han, *Angew. Chem. Int. Ed.*, 2023, e202305355.
- S10. J. N. Chang, Q. Li, J. W. Shi, M. Zhang, L. Zhang, S. Li, Y. Chen, S. L. Li and Y. Q. Lan, Angew. Chem. Int. Ed., 2022, 62, e202218868.