Supporting Information for

Heterostructured MoO_x supported Ru as robust bifunctional catalyst for overall water splitting

Yangyang Wang,^a Xin Wen,^a Xiaojing Dong,^a Chen Xu,^a Wenguang Ma,^a

Yiqiang Sun,^a Bo Xu*a,b and Cuncheng Li*a

^a School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, P. R. China.

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R.

China.

^{*}Corresponding author.

E-mail address: chm_xub@ujn.edu.cn (B. Xu), chm_licc@ujn.edu.cn

Figure S1 XRD patterns of MoO_x.

Figure S2 EDX patterns of the Ru-MoO_x.

Figure S3 a) XPS survey for Ru-MoO_x; b) Mo 3d of MoO_x and Ru-MoO_x.

Table S1 : The distribution of the oxidation state of Mo atoms on the surface of the catalysts obtained at different temperatures based on XPS analysis.

Catalyst	Mo ⁴⁺ (at%)	Mo ⁵⁺ (at%)	Mo ⁶⁺ (at%)			
RuMoO _x -350	49.17		50.83			
RuMoO _x -400		26.76	73.24			
Ru-MoO _x		28.36	71.64			
RuMoO _x -500		25.46	74.54			

Figure S4 a) The HER polarization curves and b) The OER polarization curves of ${\rm MoO}_x$ and Ru-MoO_x.

Table S2	:	Com	parison	of s	ome ree	cently	rei	ported	rer	presentat	ive	electr	ocatal	vsts	for	HER.
14010 02		COIII	parison	OI D		o o ni ci y		001000	100	100011000		010001	oodda	,000	101	11010

Catalysts	Electrolytes	η @ (10 mA cm ⁻²)	Ref.
Ru-MoO _x	1.0 M KOH	85 mV	This work
Ru-VN	1.0 M KOH	144 mV	Ref ¹
RuO_2 – Fe_2O_3	1.0 M KOH	148 mV	Ref ²
Ru-CoNi@NC-2	1.0 M KOH	268 mV	Ref ³
Ru–WSe ₂	1.0 M KOH	87 mV	Ref ⁴
S-RuP@NPSC-900	1.0 M KOH	92 mV	Ref ⁵
Ru _{1+NPs} /N–C	1.0 M KOH	39 mV	Ref ⁶
Ru/Co ₄ N-CoF ₂	1.0 M KOH	53 mV	Ref ⁷
CoRu-O/A@HNC-2	1.0 M KOH	85 mV	Ref ⁸

Catalysts	Electrolytes	η @ (10 mA cm ⁻²)	Ref.
Ru-MoO _x	1.0 M KOH	235 mV	This work
RuCo@NC	1.0 M KOH	280 mV	Ref ⁹
Ru-Ni(OH) ₂	1.0 M KOH	295 mV	Ref ¹⁰
Ru-FeRu@C/NC	1.0 M KOH	345 mV	Ref ¹¹
Ru/N-BP2000	1.0 M KOH	285 mV	Ref ¹²
Ru-CoNi@NC-2	1.0 M KOH	240 mV	Ref ³
Ru/Co ₃ O _{4-x}	1.0 M KOH	280 mV	Ref ¹³
Ru/Co-N-C	1.0 M KOH	247 mV	Ref ¹⁴
RuO _x NCs	1.0 M KOH	266 mV	Ref ¹⁵

Table S3 \div Comparison of some recently reported representative electrocatalysts for OER.

Figure S5 a, b and d-f) CVs measured for Ru-MoO_x, MoO_x, Ru-MoO_x-350, Ru-MoO_x-400 and Ru-MoO_x-500 in 1.0 M KOH at different scan rates of 20, 40, 60, 80 and 100 mV s⁻¹; c) C_{dl} for Ru-MoO_x and MoO_x.

overall water splitting.							
Catalysts	Electrolytes	η @ (10 mA cm ⁻²)	Ref.				
Ru-MoO _x (+,-)	1.0 M KOH	1.54 V	This work				
Ru-HPC∥P-RuO ₂	1.0 M KOH	1.53 V	Ref ¹⁶				
CoRu-O/A@HNC-2(+,-)	1.0 M KOH	1.558 V	Ref ⁸				
$Ru/c-Ti_3C_2T_x/NF(+,-)$	1.0 M KOH	1.53 V	Ref ¹⁷				
Ru/Co(OH)F Ru/Co ₄ N-CoF ₂	1.0 M KOH	1.55 V	Ref ⁷				
Ru/NF-2(+,-)	1.0 M KOH	1.56 V	Ref ¹⁸				
NF@NiO@Ru(+,-)	1.0 M KOH	1.55 V	Ref ¹⁹				
$Ru@MoO(S)_3(+,-)$	1.0 M KOH	1.526 V	Ref ²⁰				
$RuNi_1Co_1@CMT(+,-)$	1.0 M KOH	1.58 V	Ref ²¹				

Table S4 : Comparison of some recently reported representative bifunctional electrocatalysts for

Figure S6 TEM of Ru-MoO_x after the durability test.

Figure S7 XRD of Ru-MoO_x before and after the durability test.

References

- W. Wang, Y. Shao, Z. Wang, Z. Yang, Z. Zhen, Z. Zhang, C. Mao, X. Guo and G. Li, *ChemElectroChem*, 2020, 7, 1201-1206.
- H. Mosallaei, H. Hadadzadeh, A. Foelske, M. Sauer, H. Amiri Rudbari and O. Blacque, *Dalton Transactions*, 2022, **51**, 6314-6331.
- W. Wang, S. Xi, Y. Shao, W. Sun, S. Wang, J. Gao, C. Mao, X. Guo and G. Li, ACS Sustainable Chemistry & Engineering, 2019, 7, 17227-17236.
- 4. Y. Zhao, G. Mao, C. Huang, P. Cai, G. Cheng and W. Luo, *Inorganic Chemistry Frontiers*, 2019, 6, 1382-1387.
- 5. X. Liu, F. Liu, J. Yu, G. Xiong, L. Zhao, Y. Sang, S. Zuo, J. Zhang, H. Liu and W. Zhou, *Advanced Science*, 2020, 7, 2001526.
- S. Wang, M. Wang, Z. Liu, S. Liu, Y. Chen, M. Li, H. Zhang, Q. Wu, J. Guo, X. Feng, Z. Chen and Y. Pan, ACS Applied Materials & Interfaces, 2022, 14, 15250-15258.
- S. Zhou, H. Jang, Q. Qin, Z. Li, M. Gyu Kim, X. Ji, X. Liu and J. Cho, Chemical Engineering Journal, 2021, 414, 128865.
- 8. G. Li, K. Zheng, W. Li, Y. He and C. Xu, ACS Applied Materials & Interfaces, 2020, 12, 51437-51447.
- 9. B. Sarkar, D. Das and K. K. Nanda, *Green Chemistry*, 2020, 22, 7884-7895.
- R. Guo, W. Shi, Wenzhu Liu, X. Yang, Y. Xie, T. Yang and J. Xiao, Chemical Engineering Journal, 2022, 429, 132478.
- W. Feng, Y. Feng, J. Chen, H. Wang, Y. Hu, T. Luo, C. Yuan, L. Cao, L. Feng and J. Huang, *Chemical Engineering Journal*, 2022, 437, 135456.
- 12. H. Hu, F. M. D. Kazim, Q. Zhang, K. Qu, Z. Yang and W. Cai, *ChemCatChem*, 2019, **11**, 4327-4333.
- C.-Z. Yuan, S. Wang, K. San Hui, K. Wang, J. Li, H. Gao, C. Zha, X. Zhang,
 D. A. Dinh, X.-L. Wu, Z. Tang, J. Wan, Z. Shao and K. N. Hui, *ACS Catalysis*, 2023, 13, 2462-2471.
- 14. C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal

and C. Zhao, Advanced Materials, 2022, 34, 2110103.

- F. Zhu, J. Xue, L. Zeng, J. Shang, S. Lu, X. Cao, B. F. Abrahams, H. Gu and J. Lang, *Nano Research*, 2021, **15**, 1020-1026.
- T. Qiu, Z. Liang, W. Guo, S. Gao, C. Qu, H. Tabassum, H. Zhang, B. Zhu, R. Zou and Y. Shao-Horn, *Nano Energy*, 2019, 58, 1-10.
- A. Kong, M. Peng, H. Gu, S. Zhao, Y. Lv, M. Liu, Y. Sun, S. Dai, Y. Fu, J. Zhang and W. Li, *Chemical Engineering Journal*, 2021, 426, 131234.
- Y. Pei, S. Guo, Q. Ju, Z. Li, P. Zhuang, R. Ma, Y. Hu, Y. Zhu, M. Yang, Y. Zhou, J. Shen and J. Wang, ACS Applied Materials & Interfaces, 2020, 12, 36177-36185.
- L. Zhang, Z. Hu, H. Li, Q. Ren, Y. Qiu, J. Qu and S. Hu, *Chemphyschem*, 2021, 22, 1785-1791.
- D. Chen, R. Yu, D. Wu, H. Zhao, P. Wang, J. Zhu, P. Ji, Z. Pu, L. Chen, J. Yu and S. Mu, *Nano Energy*, 2022, **100**, 107445.
- Y. Xue, Q. Yan, X. Bai, Y. Xu, X. Zhang, Y. Li, K. Zhu, K. Ye, J. Yan, D. Cao and G. Wang, *Journal of Colloid and Interface Science*, 2022, 612, 710-721.