Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Cu₂O/Cu₂S Microstructure Regulation Towards High Efficiency Photocatalytic

Hydrogen Production And Its Theoretical Mechanism Analysis

Fen Qiao^a*, Shen Qian^a, Wenjie Liu^a, Taihang Zhou^a, Jing Yang^a, Jikang Zhao^a, Jiaren Yuan^b*

Fig.S1 SEM image of Cu₂O sample

Fig.S2 SEM image of Cu₂O/Cu₂S-1 sample

Fig.S3 SEM image of Cu₂O/Cu₂S-2 sample

Fig.S4 SEM image of Cu₂O/Cu₂S-3 sample

All DFT computations were performed utilizing the Perdew-Burke-Ernzerhof (PBE) flavor of spin-polarized DFT with generalized gradient approximation (GGA), as integrated in the software of Vienna ab initio simulation program (VASP). To treat valence electrons, a plane waves basis set with a kinetic energy cutoff of 400 eV was adopted. The convergence criteria for energy and force were set at 10⁻⁵ eV and 0.02 eV/Å, respectively. The k-point densities used for Brillouin zone sampling in electronic calculations were 9×9×1. A grimme of DFT-D3 method was adopted in all calculations. To avoid inaccuracies due by periodic effects, a 15 Å vacuum layer was placed along the z-axis of the plane to simulate the slab surface.