Polymorphism in *N*-(5-methylisoxazol-3-yl)malonamide: Understanding the Supramolecular Structure and the Crystallization Mechanism

Anderson B. Pagliari[†], Jéssica M. L. Rosa[†], Priscila S. V. de Lima[†], Geórgia C. Zimmer[†], Maria E. C. da Silva[†], Érica G. de Oliveira[†], Helio G. Bonacorso[†], Nilo Zanatta[†], and Marcos A. P. Martins[†]*

[†]Núcleo de Química de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil

*E-mail of the corresponding author: marcos.nuquimhe@gmail.com

Fig. S1. Supramolecular cluster of the compound 1I.

Dimer	Symmetry code	$C_{M1\cdots MN}$ (Å ²)	G _{M1···MN} (kcal mol ⁻¹)	NC _{M1···MN}	$NG_{M1\cdots MN}$
M1	x,y,z				
M1…M2	1+x,y,z	44.33	-9.88	2.03	1.98
M1…M3	-1+x,y,z	44.33	-9.88	2.03	1.98
$M1 \cdots M4$	1+x,1+y,-1+z	9.36	-0.99	0.43	0.20
$M1\cdots M5$	x,1+y,-1+z	8.7	0.02	0.40	0.00
M1…M6	1-x,2-y,-z	3.55	-0.12	0.16	0.02
$M1\cdots M7$	2-x,1-y,1-z	5.03	-1.37	0.23	0.28
M1…M8	1-x,1-y,1-z	48.03	-13.72	2.20	2.75
M1…M9	-x,1-y,1-z	36.92	-3.16	1.69	0.63
M1…M10	-x,-y,2-z	2.15	-0.41	0.10	0.08
M1…M11	x,-1+y,1+z	8.7	0.02	0.40	0.00
M1…M12	-1+x, -1+y, 1+z	9.36	-0.99	0.43	0.20
M1…M13	1-x,1-y,2-z	23.14	-4.44	1.06	0.89
M1…M14	-x,1-y,2-z	23.22	-5.29	1.07	1.06
M1…M15	2-x,2-y,1-z	21.23	-15.43	0.97	3.10
M1…M16	1-x,2-y,1-z	38.9	-9.10	1.78	1.83
Total		326.95	-74.75	15.00	15.00

Table S1. Topological and energetic data of each dimer from the supramolecular cluster of compound **1I**.

Fig. S2. Supramolecular cluster of the compound 1II.

Table S2. Topological and energetic data of each dimer from the supramolecular cluster of compound **1II**.

Dimer	Symmetry code	$C_{M1\cdots MN}$ (Å ²)	$G_{M1\cdots MN}$ (kcal mol ⁻¹)	$NC_{M1\cdots MN}$	$NG_{M1\cdots MN}$
M1	x,y,z				
M1…M2	x,-1+y,z	52.38	-11.96	2.51	2.43
M1…M3	x,1+y,z	52.38	-11.96	2.51	2.43
M1…M4	-2-x,1-y,1-z	11.28	-2.28	0.54	0.46
M1…M5	-1,5+x,2-y,-1/2+z	9.07	-0.29	0.44	0.06
M1…M6	-1+x, -1+y, z	8.3	-1.45	0.40	0.30
M1…M7	-1+x,y,z	27.49	-4.79	1.32	0.97
M1…M8	-1+x, 1+y, z	8.3	-1.45	0.40	0.30
M1…M9	-x,-y,2-z	21.7	-14.48	1.04	2.95
M1…M10	-x,1-y,2-z	28.27	-2.63	1.36	0.53
M1…M11	1-x,1-y,2-z	11.28	-2.28	0.54	0.46
M1…M12	1-x,2-y,2-z	9.07	-0.29	0.44	0.06
M1…M13	1+x,-1+y,z	8.3	-1.45	0.40	0.30
M1…M14	1+x,y,z	27.49	-4.79	1.32	0.97
M1…M15	1+x,1+y,z	8.3	-1.45	0.40	0.30
M1…M16	-1-x,-y,1-z	21.7	-14.48	1.04	2.95
M1…M17	-1-x,1-y,1-z	28.27	-2.63	1.36	0.53
Total		334.00	-79.00	16.00	16.00

Fig. S3 Supramolecular cluster of the compound 1III.

Table S3. Topological and energetic data of each dimer from the supramolecular cluster of compound **1III**.

Dimer	Symmetry code	$C_{M1\cdots MN}$ (Å ²) $G_{M1\cdots MN}$ (kcal mo		$NC_{M1\cdots MN}$	$NG_{M1\cdots MN}$
M1	x,y,z				
M1…M2	x,y,z	52.63	-9.94	2.89	2.25
M1…M3	x,1+y,z	10.85	-0.11	0.60	0.03
$M1\cdots M4$	1,5-x,1-y,1/2+z	10.79	-0.24	0.59	0.05
M1…M5	1/2+x,1-y,-1/2+z	22.12	-3.48	1.21	0.79
M1…M6	1,5-x,-y,-1/2+z	9.63	-1.83	0.53	0.41
M1…M7	1,5-x,1-y,-1/2+z	15.41	-4.31	0.85	0.98
M1…M8	x,y,z	21.74	-3.55	1.19	0.80
M1…M9	x,y,z	15.92	-4.43	0.87	1.00
M1…M10	1/2-x,-y,-1/2+z	9.63	-1.83	0.53	0.41
M1…M11	1/2-x,1-y,-1/2+z	15.41	-4.31	0.85	0.98
M1…M12	1/2-x,1-y,1/2+z	10.79	-0.24	0.59	0.05
M1…M13	-1/2+x,1-y,-1/2+z	22.12	-3.48	1.21	0.79
M1…M14	-1/2+x,1-y,1/2+z	15.41	-4.31	0.85	0.98
M1…M15	1/2-x,1-y,1/2+z	6.98	-1.14	0.38	0.26
M1…M16	x,y,1+z	25.41	-20.23	1.39	4.57
M1…M17	x,1+y,z	40.8	-10.73	2.24	2.43
M1…M18	1,5-x,1-y,1/2+z	15.41	-4.31	0.85	0.98
M1…M19	1,5-x,1-y,1/2+z	6.98	-1.14	0.38	0.26
Total		328.03	-79.61	18.00	18.00

Fig. S4. Supramolecular cluster of the compound 2.

Dimer	Symmetry code	$C_{M1\cdots MN}$ (Å ²)	$G_{M1\cdots MN}$ (kcal mol ⁻¹)	$NC_{M1\cdots MN}$	$NG_{M1 \cdots MN}$
M1	x,y,z				
M1…M2	1-x,-y,-z	35.7	-9.25	1.63	2.02
M1…M3	x,1+y,z	35.7	-9.25	1.63	2.02
$M1\cdots M4$	-1+x,1/2-y,-1,5+z	12.02	-0.83	0.55	0.18
M1…M5	-1+x,1,5-y,-1,5+z	12.02	-0.83	0.55	0.18
M1…M6	-1+x, -1+y, -1+z	0.11	-0.38	0.01	0.08
$M1\cdots M7$	-1+x,y,-1+z	21.18	-4.22	0.97	0.92
$M1\cdots M8$	1-x,-1/2+y,1/2-z	36.06	-8.27	1.65	1.81
M1…M9	x,1,5-y,1/2+z	36.06	-8.27	1.65	1.81
M1…M10	2-x,-1/2+y,1,5-z	12.02	-0.83	0.55	0.18
$M1\cdots M11$	2-x,1/2+y,1,5-z	12.02	-0.83	0.55	0.18
M1…M12	2-x,1-y,1-z	21.18	-4.22	0.97	0.92
M1…M13	2-x,2-y,1-z	0.11	-0.38	0.01	0.08
M1…M14	x,1/2-y,-1/2+z	36.06	-8.28	1.65	1,81
M1…M15	x,1,5-y,-1/2+z	36.06	-8.28	1.65	1.81
Total		306.30	-64.14	14.00	14.00

Table S4. Topological and energetic data of each dimer from the supramolecular cluster of compound **2**.

Table S5. QTAIM analysis and intramolecular interactions data for compounds 1 and 2.

01…H9	0.01722	0.06115	0.19791	0.00071	-0.01387	0.014579	4.344413	-2.86
Total	0.040127							-6.65
				1II				
	6			57			Le Le	
Atoms	ρ_{int} (a.u.)	$\nabla^2 \rho$	8	K	V	G	BPL	$\begin{array}{c} G_{AI(X \cdots Y)} \\ (kcal \ mol^{-1}) \end{array}$
O17…H27	0.012146	0.050156	0.680682	0.00179	-0.00895	0.010746	5.149239	-2.01
O1…H11	0.012147	0.050156	0.680365	0.00179	-0.00895	0.010747	5.148992	-2.01
Total	0.024293							-4.02
				1III				
	e						-	
Atoms	ρ_{int} (a.u.)	$\nabla^2 \rho$	3	K	V	G	BPL	$\begin{array}{c} G_{AI(X \cdots Y)} \\ (kcal \; mol^{\text{-}1}) \end{array}$
O1…H11	0.011681	0.048214	0.769936	- 0.00178	-0.0085	0.010275	5.232394	-1.93
O18…H28	0.011681	0.048214	0.769936	0.00178	-0.0085	0.010275	5.232394	-1.93
Total	0.023362							-3.86
	đ	ł		2			te	
Atoms	ρ_{int} (a.u.)	$\nabla^2 \rho$	3	K	V	G	BPL	$G_{AI(X \cdots Y)} \ (kcal mol^{-1})$
H4…O71	0.012261	0.04999	0.484268	-0.001694	-0.009109	0.010803	4.98478	-2.03
H4…O71	0.012261	0.04999	0.484268	-0.001694	-0.009109	0.010803	4.98478	-2.03
Total	0.024522							-4.06

-

Fig. S5. Concentration-dependent ¹H NMR experiments performed in CDCl₃ at 298 K (top) and correlation between concentration and $\Delta\delta$ for 1 (down).

Hydrogen	Linear Equation	\mathbb{R}^2
NH(b)	y = -0.09624x - 0.00063	0.9452
CH(a)	y = -0.00010x + 0.00007	0.0622
CH(c)	y = 0.01769x - 0.00012	0.8305
CH(d)	y = 0.02805x + 0.00029	0.7714

Table S6. Linear equations based on the graphics of $\Delta\delta$ as a function of concentration for the ¹H NMR signals of compound **1**.

Table S7. Energies obtained from the fragmentation via QTAIM ($G_{AI(X \cdots Y)}$), sum of the cluster contribution ($\Sigma G_{AI(X \cdots Y)}$), number of contacts, normalized G_{AI} , and the average value of G_{AI} .

Form 1I											
Interactio	NH…O=	O…	CH···	$N\cdots \pi$	CH···	СН…Н	$N\cdots$	0…	π…	CH···	NH···
n	С	π	0	11 1	Ν	С	0	0	π	π	N
	-3.24	-0.93	-1.13	-1.25	-2.03	-0.76	-1.15	-1.55	- 0.59	-0.95	-7.72
	-3.24	-0.93	-1.13	-1.25	-2.03	0.02	-1.15		- 2.21	-0.95	-7.72
			-2.42	-2.12		-0.12	-1.84				
			-2.42	-2.12		-1.37	-1.84				
			-0.23	-1.69		-0.67					
			-0.45	-1.09		-0.07					
a			-0.45			-0.76					
$G_{AI(X \cdots Y)}$			-0.45			0.02					
			-0.23			-0.59					
			-0.86								
			-0.86								
			-1.07								
			-1.07								
			-1.40								
			-1.60								
			-1.60								
$\Sigma_{G_{AI(X\cdots Y)}}$	-6.49	-1.87	-19.22	- 10.12	-4.06	-5.31	-5.98	-1.55	- 2.80	-1.90	-15.43
Contacts	2	2	18	6	2	10	4	1	2	2	2
$NG_{AI (XY)}$	4.43	1.27	13.12	6.91	2.77	3.63	4.08	1.06	1.91	1.30	10.53
$G_{AI(X\cdots Y)}_{av}$	-3.24	-0.93	-1.07	-1.69	-2.03	-0.53	-1.50	-1.55	- 1.40	-0.95	-7.72
				-	Form 1I	Ι					
Interactio n	Ο…π	CH∙	···O	Ν…π	CH	····HC	0()	NH···N	1 1	N…N
	-2.25	-1.	74	-1.99	-	-0.50	-0.38	3	-7.24		-0.59
	-2.25	-1.	74	-1.99	-	-0.29	-0.38	3	-7.24		-0.59
	-2.25	-1.	74	-1.99	-	0.50	-0.38	\$	-7.24		
	-2.25	-1.	74 89	-1.99	-	-0.29 -0.64	-0.38	\$	-/.24		
	-0.36	-0.	89		_	-0.64					
	-0.36	-0.	89		-	-0.86					
	-0.36	-0.	89		-	-0.64					
		-1.4	45		-	-0.64					
$G_{AI}(\mathbf{X}\cdots\mathbf{Y})$		-1	45		-	-0.86					
/11(/1 1)		-1. 1	32								
		-1.	32 32								
		-1.	32 32								
		-1.4	45								
		-1.	45								
		-0.	28								
		-0.1	28								
		-0.1	28								
Σ_{G}	-10.45	-0. _??	∠o 73	_7 94		5 89	-1.51	,	-28.06		-1 18
Contacts	8	-22	0	-7.94	-	10	-1.52	_	-20.90	,	2
$NG_{AI(XY)}$	6.91	15.	03	5.25		3.89	1.00)	19.15		0.78
$G_{AI(X\cdots Y)}_{av}$	-1.31	-1.	14	-1.99	-	0.59	-0.38	3	-7.24		-0.59

			Form 1III ($M1 \cdots MN$				
Interaction	NH···O=S	δ Ο…π	СН…О	Ν…π	CH…N	CH···HC	$CH\cdots\pi$	
Energy Gai	-7.50	-0.98	-1.62	-1.77	-1.11	-0.24	-1.12	
	-7.50	-0.98	-0.75	-1.77	-1.11	-0.53	-1.12	
		-1.86	-0.25	-1.04	-1.68	-0.55		
		-1.86	-0.64	-1.04	-1.68	-0.53		
			-1.74		-1.68	-0.55		
			-1.78		-1.45	-0.24		
			-1.78		-1.45	-1.14		
			-2.22		-0.81	-1.14		
			-2.22		-0.81			
			-0.25		-1.00			
			-0.64					
C			-1.74					
$G_{AI(X \cdots Y)}$			-1.62					
			-0.25					
			-0.64					
			-1.74					
			-2.32					
			-1.52					
			-1.32					
			-2.00					
			-0.25					
			-0.64					
_			-1.74					
$\Sigma G_{AI(X \cdots Y)}$	-15.00	-5.68	-32.59	-5.61	-13.46	-4.93	-2.23	
Contacts	2	4	25	4	10	8	2	
$NG_{AI(XY)}$	10.36	3.92	22.52	3.87	9.30	3.40	1.54	
$G_{AI(XY)}_{av}$	-7.50	-1.42	-1.30	-1.40	-1.35	-0.62	-1.12	
			Form 1III	(M1…S)				
Interacti	on	NH···O=S	CH	0	CH···N	CH	CH···HC	
		-7.50	-1.	78	-1.45	-(0.24	
C		-7.50	-1.	78	-1.45	-(-0.24	
G _{AI(X}	Y)		-2.	22			1.14	
			-2. -2.	32			1.14	
$\Sigma_{G_{AI(X^{})}}$	·Y)	-15.00	-10	.30	-2.91	-2	-2.76	
Contac	ts	2	4	5	2		4	
$NG_{AI(X)}$	Y)	6.30	4.	32	1.22	1	1.16	
$G_{AI(X\cdots Y)}_{av}$		-7.50	-2.	06	-1.45	-(-0.69	