Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Ultra-thin carbon-shell coated Ru/RuO2@C with rich grain boundaries for

efficient and durable acidic water oxidation

Qian Chen, Ruonan Wang, Lin Liu, Zhiming Guan, Zhibin Zhu*a, Lixin Cao*a, Bohua Dong*a

Figure S1. HAADF-STEM image of Ru/RuO₂@C-300.

Figure S2. EDS line scan of Ru/RuO₂@C-300.

Figure S3. The HRTEM images of Ru/RuO₂@C-300.

Figure S4. (a)-(b) SEM image of Ru@C.

Figure S5. (a)-(b) SEM image of Ru/RuO₂@C-250.

Figure S6. (a)-(b) SEM image of Ru/RuO₂@C-300.

Figure S7. (a)-(b) SEM image of Ru/RuO₂@C-350.

Figure S8. (a) XPS survey, (b) Ru 3d+C 1s of Ru/RuO₂@C-300.

Figure S9. Electrocatalytic performance of Ru/RuO₂@C-300 and Ru/RuO₂-300 catalysts in 0.5 M H₂SO₄ solution with 90% iR compensation (a) LSV polarization curves. (b) Tafel plots.

Figure S10. Electrocatalytic performance of Ru/RuO₂@C-250, Ru/RuO₂@C-300, Ru/RuO₂@C-350, and commercial RuO₂ catalysts in 0.5 M H₂SO₄ solution without iR compensation (a) LSV polarization curves. (b) Tafel plots. (c) Overpotentials at a current density of 10 mA cm⁻² and 20 mA cm⁻².

Figure S11. The CV curves of Ru/RuO₂@C-250 (a), Ru/RuO₂@C-300 (b), and Ru/RuO₂@C-350 (c) with the scan rate ranging from 20 to 100 mV s⁻¹ in 0.5 M H₂SO₄, the Cdl values at the potential of 0.297 V (d).

Figure S12. EIS plots of Ru/RuO₂@C-250, Ru/RuO₂@C-300, Ru/RuO₂@C-350 and C-RuO₂.

Figure S13. EIS plots of Ru/RuO₂@C-300 and Ru/RuO₂-300.

Figure S14. Linear sweep voltammograms of the Ru/RuO₂@C-300 and Ru/RuO₂-300 for OER were obtained before and after 5000 potential cycles.

Figure S15. SEM images of the Ru/RuO₂@C-300 after the chronopotentiometry experiment.

Figure S16. TEM images of the Ru/RuO₂@C-300 after the chronopotentiometry experiment.

Figure S17. XRD for initial Ru/RuO₂@C-300 and after stability Ru/RuO₂@C-300.

Catalyst	Electrolyte	I] ₁₀	Tafel	Stability	Ref
		(mV)	plots	(h)	
			(mV dec ⁻¹)		
Ru/RuO ₂ @C-300	0.5M H ₂ SO ₄	173	51.77	120@10mA cm ⁻²	This
					Wor
$Cu_{0.3}Ir_{0.7}O_{\delta}$	0.1 M	351	63	1.67h@ 1.68 V	1
	HClO ₄			v.s. RHE	
IrO2@RuO2	0.5M H ₂ SO ₄	270	57.8	1000 cycles@	2
				0.3-1.2 V v.s.	
				RHE	
1D-RuO ₂ -CNx	0.5M H ₂ SO ₄	250	52	50 h@ 1.57 V	3
				v.s. RHE	
Ir ₁ Fe _{0.11} /C	0.5 M	278	62	3.6h @ 10 mA	4
	HClO ₄			cm ⁻²	
Ir-Ni _{0.57} Fe _{0.82}	0.5 M	284	48.6	5.6 h @ 10 mA	5
	HClO ₄			cm-2	
Ir nanoparticles	0.5M H ₂ SO ₄	290	46	10 h @ 10 mA	6
				cm ⁻²	
RuO ₂ /Co ₃ O ₄ -R	0.5M H ₂ SO ₄	247	89	8 h @ 10 mA	7
uCo@NC				cm ⁻²	
027-RuO2@C	0.5M H ₂ SO ₄	220	66		8
Y _{1.85} Ba _{0.15} Ru ₂ O ₇	0.5M H ₂ SO ₄	278	40.8	4 h @ 10 mA	9
				cm ⁻²	
Ru NCs/Co ₂ P	0.5M H ₂ SO ₄	197	89	10 h @ 12 mA	10
				cm ⁻²	
Ru@IrO _x	0.05M H ₂ SO ₄	282	69.1	24 h @ 1.55 V	11
				vs. RHE	

Table S1. Performance comparison of Ru/RuO₂@C-300 with the state-of-art catalysts reported recently in acidic electrolytes.

Mg-doping	0.5M H ₂ SO ₄	228	48.66	30 h @ 10 mA	12
RuO ₂				cm-2	
Ni-Ru@	0.5M H ₂ SO ₄	184	44	30 h @ 10 mA	13
RuOx-HL				cm-2	
IrO ₂ -BN-rGO	0.5M H ₂ SO ₄	300	72.1	12350 cycles @	14
				0.30-0.33 V	
CP@NCNT	0.5M H ₂ SO ₄	317	75	24 h @ 1.565 V	15
				v.s. RHE	
Ultrafine	0.5M H ₂ SO ₄	179	36.9	20 h @ 10 mA	16
Defective				cm ⁻²	
RuO ₂					
$Mn_{0.73}Ru_{0.27}O_{2-\delta}$	0.5M H ₂ SO ₄	208	65.3	10 h@10 mA	17
				cm ⁻²	

References

- 1. W. Sun, Y. Song, X. Q. Gong, L. M. Cao and J. Yang, *Chem Sci*, 2015, **6**, 4993-4999.
- 2. T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges and K. B. Kokoh, *The Journal of Physical Chemistry C*, 2016, **120**, 2562-2573.
- 3. T. Bhowmik, M. K. Kundu and S. Barman, ACS Appl Mater Interfaces, 2016, 8, 28678-28688.
- 4. L. Fu, P. Cai, G. Cheng and W. Luo, *Sustainable Energy & Fuels*, 2017, **1**, 1199-1203.
- 5. L. Fu, G. Cheng and W. Luo, *Journal of Materials Chemistry A*, 2017, **5**, 24836-24841.
- 6. J. Zhang, G. Wang, Z. Liao, P. Zhang, F. Wang, X. Zhuang, E. Zschech and X. Feng, Nano Energy, 2017, 40, 27-33.
- 7. Z. Fan, J. Jiang, L. Ai, Z. Shao and S. Liu, *ACS Appl Mater Interfaces*, 2019, **11**, 47894-47903.
- 8. H.-S. Park, J. Yang, M. K. Cho, Y. Lee, S. Cho, S.-D. Yim, B.-S. Kim, J. H. Jang and H.-K. Song, *Nano Energy*, 2019, **55**, 49-58.
- 9. Q. Feng, J. Zou, Y. Wang, Z. Zhao, M. C. Williams, H. Li and H. Wang, ACS Appl Mater Interfaces, 2020, **12**, 4520-4530.
- 10. Y. Deng, L. Yang, Y. Wang, L. Zeng, J. Yu, B. Chen, X. Zhang and W. Zhou, *Chinese Chemical Letters*, 2021, **32**, 511-515.
- 11. J. Shan, C. Guo, Y. Zhu, S. Chen, L. Song, M. Jaroniec, Y. Zheng and S.-Z. Qiao, *Chem*, 2019, **5**, 445-459.

- 12. Y. Li, L. Xing, D. Yu, A. Libanori, K. Yang, J. Sun, A. Nashalian, Z. Zhu, Z. Ma, Y. Zhai and J. Chen, ACS Applied Nano Materials, 2020, **3**, 11916-11922.
- A. M. Harzandi, S. Shadman, A. S. Nissimagoudar, D. Y. Kim, H. D. Lim, J. H. Lee, M. G. Kim, H. Y. Jeong, Y. Kim and K. S. Kim, *Advanced Energy Materials*, 2021, **11**.
- 14. P. Joshi, R. Yadav, M. Hara, T. Inoue, Y. Motoyama and M. Yoshimura, *Journal of Materials Chemistry A*, 2021, **9**, 9066-9080.
- 15. D. Yang, W. Hou, Y. Lu, W. Zhang and Y. Chen, *Journal of Energy Chemistry*, 2021, **52**, 130-138.
- 16. R. Ge, L. Li, J. Su, Y. Lin, Z. Tian and L. Chen, Advanced Energy Materials, 2019, 9.
- 17. K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin, Q. Zhang, L. Lei, M. Qiu, G. Wu and Y. Hou, *Energy & Environmental Science*, 2022, **15**, 2356-2365.