Supporting Information

Cation exchange in an anionic Metal-organic Framework enhancing propylene/propane separation

Xue Zhang, † Hui-Juan Tang, † Min Zeng, Rong Yang, Yu Wang * and Kai-Jie Chen *

^{*a*} Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China

* Corresponding author. E-mail addresses: <u>wychem@nwpu.edu.cn</u> (Y. Wang) and <u>ckjiscon@nwpu.edu.cn</u> (K. -J. Chen)

[†]These authors contributed equally to this work.

Table of contents

S1 General description of 1

S2 Supplementary methods

1 Ideal Adsorbed Solution Theory Calculations

1.1 Single-site Langmuir-Freundlich model

1.2 IAST calculations

2 Isosteric heat of adsorption

3 Breakthrough Experiments

S3 Supplementary figures

Fig. S1 Partial Enlarged view of the 1 along the crystallographic c-axis.

Fig. S2 PXRD patterns for 1 and 1·K under various conditions.

Fig. S3 TGA curves for 1 and 1·K.

Fig. S4 SEM images (a,b), EDS analysis and elemental mapping (c) of 1.

Fig. S5 SEM images (a,b), EDS analysis and elemental mapping (c) of $1 \cdot K$.

Fig. S6 Pore size distribution for 1 and $1 \cdot K$ using data measured with N₂ at 77 K.

Fig. S7 The BET and Langmuir plots for 1 (a ,b) and $1 \cdot K$ (c ,d) obtained from the N₂ adsorption isotherm at 77 K.

Fig. S8 (a) C_3H_6 and C_3H_8 adsorption isotherms for 1 and 1·K at 273 K. (b-c) C_2H_4 and C_2H_6 adsorption isotherms for 1 and 1·K at 273 K and 298 K.

Fig. S9 Virial fittings of C_3H_6 adsorption isotherms for $1 \cdot K$ at 273 K and 298 K.

Fig. S10 Virial fittings of C_3H_8 adsorption isotherms for $1 \cdot K$ at 273 K and 298 K.

Fig. S11 Virial fittings of C₃H₆ adsorption isotherms for 1 at 273 K and 298 K.

Fig. S12 Virial fittings of C₃H₈ adsorption isotherms for 1 at 273 K and 298 K.

Fig. S13 Virial fittings of C_2H_4 adsorption isotherms for $1 \cdot K$ at 273 K and 298 K.

Fig. S14 Virial fittings of C_2H_6 adsorption isotherms for $1 \cdot K$ at 273 K and 298 K.

Fig. S15 Virial fittings of C_2H_4 adsorption isotherms for 1 at 273 K and 298 K.

Fig. S16 Virial fittings of C₂H₆ adsorption isotherms for 1 at 273 K and 298 K.

Fig. S17 Comparison of Q_{st} of 1 and 1·K for C₂H₄ and C₂H₆.

Fig. S18 Single-site L-F model fitting for C_3H_6 isotherm of $1 \cdot K$ at 273 K.

Fig. S19 Single-site L-F model fitting for C_3H_6 isotherm of $1 \cdot K$ at at 298 K.

Fig. S20 Single-site L-F model fitting for C_3H_8 isotherm of $1 \cdot K$ at 273 K..

Fig. S21 Single-site L-F model fitting for C_3H_8 isotherm of $1 \cdot K$ at 298 K..

Fig. S22 Single-site L-F model fitting for C_3H_6 isotherm of 1 at 273 K.

Fig. S23 Single-site L-F model fitting for C_3H_6 isotherm of 1 at 298 K.

Fig. S24 Single-site L-F model fitting for C_3H_8 isotherm of 1 at 273 K.

Fig. S25 Single-site L-F model fitting for C₃H₈ isotherm of 1 at 298 K.

Fig. S26 Single-site L-F model fitting for C_2H_4 isotherm of $1 \cdot K$ at 273 K.

Fig. S27 Single-site L-F model fitting for C₂H₄ adsorption isotherm of 1 · K at 298 K.

Fig. S28 Single-site L-F model fitting for C_2H_6 adsorption isotherm of $1 \cdot K$ at 273 K.

Fig. S29 Single-site L-F model fitting for C_2H_6 isotherm of $1 \cdot K$ at 298 K.

Fig. S30 Single-site L-F model fitting for C_2H_4 isotherm of 1 at 273 K.

Fig. S31 Single-site L-F model fitting for C₂H₄ isotherm of 1 at 298 K.

Fig. S32 Single-site L-F model fitting for C_2H_6 isotherm of 1 at 273 K.

Fig. S33 Single-site L-F model fitting for C₂H₆ isotherm of 1 at 298 K.

Fig. S34 IAST selectivities of 1 and $1 \cdot K$ for equimolar C_2H_4/C_2H_6 at 298 K.

Fig. S35 Outlet C_3H_6 (red) and C_3H_8 (blue) compositions of the adsorption-desorption cycle in the breakthrough experiment for 1 (a) and 1·K (b).

Fig. S36 The single dynamic breakthrough curves of **1** (a) and **1**·K (b) with equimolar C_2H_4/C_2H_6 gas mixtures at 298 K and 100 kPa. (c) Cycling stability of **1**·K.

S4 Supplementary tables

Table S1 ICP analysis results of 1.K.

Table S2 Summary of the adsorption capacity of C_3H_6 and C_3H_8 , as well as C_3H_6/C_3H_8 (50/50) selectivity in some MOFs.

References

S1 General description of 1

According to reported literature, **1** crystallizes in the orthorhombic space group Fddd and has a 3D anionic framework built with triangle clusters [Cu₃(μ_3 -OH)] and 4pyrazolecarboxylate, showing ultramicroporous channels with aperture size of 6.3 × 6.8 Å (**Fig. S1**). Because of the negative charge of the framework ([Cu₃(μ_3 -OH)(pyc)₃]⁻), an extra free dimethylamine cation is needed to counterbalance, yielding a formula of [Me₂NH₂][Cu₃(μ_3 -OH)(pyc)₃] for **1**. Previous studies showed that the free Me₂NH₂⁺ ions can be exchanged by Li⁺ ions to improve the pore volume and H₂ uptake.

S2 Supplementary methods

1 Ideal Adsorbed Solution Theory Calculations

1.1 Single-site Langmuir-Freundlich (L-F) model

The selectivity was calculated to evaluate the C_3H_6/C_3H_8 and C_2H_4/C_2H_6 separation performance based on the IAST method. Single-site Langmuir-Freundlich model was used to fit the C_3H_8 or C_3H_6 adsorption isotherms obtained at 273 K and 298 K.

$$q = A_1 \frac{b_1 x^{c_1}}{1 + b_1 x^{c_1}}$$
(S1)

Where *q* is the quantity adsorbed(mmol/g), and A_1 is the saturation loadings for adsorption sites *A* (mmol/g). b_1 represents the constant (kPa^{-c}), and *x* represents the pressure of bulk gas at equilibrium with adsorbed phase (kPa). The c_1 represents the Freundlich exponent.

1.2 IAST calculations

IAST calculations of C_3H_6/C_3H_8 (50/50, v/v) adsorption at 298 K were performed by

$$S_{abs} = \frac{\frac{q_{C3H6}}{q_{C3H8}}}{\frac{p_{C3H6}}{p_{C3H8}}}$$
(S2)

Similarly, the IAST selectivity for C_2H_4/C_2H_6 (50/50, v/v) adsorption at 298 K was defined as

$$S_{abs} = \frac{\frac{q_{C2H4}}{q_{C2H6}}}{\frac{p_{C2H4}}{p_{C2H6}}}$$
(S3)

where q is the uptake quantities in the mixture, and p is the corresponding mole fraction used in the feed gas mixture.

2 Isosteric heat of adsorption

At 273 K and 298 K ,the Virial equation comprising of the temperature-independent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for C_3H_6 and C_3H_8 in 1 and 1·K.

$$\ln P = \ln N + \frac{1}{k} \sum_{i=0}^{m} a_i N_j + \sum_{j=0}^{n} b_j N_j$$
(S4)

Here, P is the pressure expressed in kPa, N is the amount absorbed in mmol g⁻¹, k is the temperature in K, a_i and b_j are Virial coefficients, and m as well as n represent the number of coefficients required to adequately describe the isotherms. The values of the Virial coefficients a_0 through a_m were then used to calculate the isosteric heat of absorption using the following expression:

$$Q_{st} = -R \sum_{i=0}^{m} a_i N_i \tag{S5}$$

 Q_{st} represents the coverage-dependent isosteric heat of adsorption (kJ mol⁻¹) and R is the universal gas constant. Based on the adsorption isotherms measured by Micromeritics 3Flexanalyzer, the heat enthalpy of C₃H₆, C₃H₈, C₂H₄ and C₂H₆ for samples were determined at 273 K and 298 K as well as 0-100 kPa.

3 Breakthrough Experiments

Breakthrough experiments for the C_3H_6/C_3H_8 mixtures and C_2H_4/C_2H_6 were performed in a homemade apparatus at 298 K. In the separation experiment, sample 1 (0.88 g for cycle test) and 1·K (0.631 g for cycle test) samples were packed into a stainless-steel column, followed by activating at 373 K for 12 h under the Helium flow of 20 mL min⁻¹. Then, the adsorption column was dropped to 298 K, followed by introducing the equimolar C_3H_6/C_3H_8 gas mixtures. The raw mixed gas flow rate was maintained at 1 mL min⁻¹. The gas chromatograph monitored the effluent gas by a thermal conductivity detector (TCD).

The C_3H_6 purity (c) is defined by the peak area of C_3H_6 , we calculated C_3H_6 purity according to the following equation:

$$c = \frac{C_i(C_3H_6)}{C_i(C_3H_6) + C_i(C_3H_8)}$$
(S6)

where C_i (C₃H₆) and C_i (C₃H₈) represent the peak areas of component C₃H₆ and C₃H₈ in a single injection.

S3 Supplementary figures

Fig. S1 Partial Enlarged view of the 1 along the crystallographic c-axis.

Fig. S2 PXRD patterns for 1 (a) and $1 \cdot K$ (b) under various conditions.

Fig. S3 TGA curves for 1 and 1·K.

Fig. S4 SEM images (a,b) ,EDS analysis and elemental mapping (c) of 1.

Fig. S5 SEM images (a,b), EDS analysis and elemental mapping (c) of $1 \cdot K$.

Fig. S6 Pore size distribution for 1 and $1 \cdot K$ using data measured with N₂ at 77 K.

Fig. S7 The BET and Langmuir plots for 1 (a ,b) and $1 \cdot K$ (c ,d) obtained from the N₂ adsorption isotherm at 77 K.

Fig. S8 (a) C₃H₆ and C₃H₈ adsorption isotherms for 1 and 1·K at 273 K. (b-c) C₂H₄ and

 C_2H_6 adsorption isotherms for 1 and $1\cdot K$ at 273 K and 298 K.

Fig. S9 Virial fittings (lines) of C_3H_6 adsorption isotherms (symbols) for 1·K at 273 K and 298 K.

Fig. S10 Virial fittings (lines) of C_3H_8 adsorption isotherms (symbols) for 1·K at 273 K and 298 K.

Fig. S11 Virial fittings (lines) of C_3H_6 adsorption isotherms (symbols) for 1 at 273 K and 298 K.

Fig. S12 Virial fittings (lines) of C_3H_8 adsorption isotherms (symbols) for 1 at 273 K and 298 K.

Fig. S13 Virial fittings (lines) of C_2H_4 adsorption isotherms (symbols) for 1·K at 273 K and 298 K.

Fig. S14 Virial fittings (lines) of C_2H_6 adsorption isotherms (symbols) for 1·K at 273 K and 298 K.

Fig. S15 Virial fittings (lines) of C₂H₄ adsorption isotherms (symbols) for 1 at 273 K

and

298

Κ.

Fig. S16 Virial fittings (lines) of C_2H_6 adsorption isotherms (symbols) for 1 at 273 K and 298 K.

Fig. S17 Comparison of Q_{st} of **1** and **1** · **K** for C_2H_4 and C_2H_6 .

Model	LFUser (User)
Equation	A1*b1*x^c1/(1+b1*x^c1)
Plot	В
A1	3.28829 ± 0.04722
b1	1.95531 ± 0.12733
c1	0.45531 ± 0.02034
Reduced Chi- Sqr	0.00464
R-Square (COD)	0.99222
Adj. R-Square	0.99168

Fig. S18 Single-site Langmuir-Freundlich (L-F) model fitting for C_3H_6 isotherm of $1 \cdot K$

at 273 K.

Fig. S19 Single-site Langmuir-Freundlich (L-F) model fitting for C_3H_6 isotherm of $1 \cdot K$

at 298 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	В	
A1	2.93874 ± 0.07316	
b1	1.27308 ± 0.09588	
c1	0.42987 ± 0.02642	
Reduced Chi-Sqr	0.00497	
R-Square (COD)	0.9875	
Adj. R-Square	0.98661	

Fig. S20 Single-site Langmuir-Freundlich (L-F) model fitting for C_3H_8 isotherm of $1 \cdot K$

at 273 K.

Fig. S21 Single-site Langmuir-Freundlich (L-F) model fitting for C₃H₈ isotherm of 1·K

at 298 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	В	
A1	2.10059 ± 0.0383	
b1	0.68378 ± 0.02111	
c1	0.41054 ± 0.01291	
Reduced Chi-Sqr	3.38283E-4	
R-Square (COD)	0.99768	
Adj. R-Square	0.99752	

Fig. S22 Single-site Langmuir-Freundlich (L-F) model fitting for C_3H_6 isotherm of 1

at 273 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	D	
A1	1.88818 ± 0.03832	
b1	0.43437 ± 0.01106	
c1	0.46937 ± 0.01383	
Reduced Chi-Sqr	2.19789E-4	
R-Square (COD)	0.99834	
Adj. R-Square	0.99822	

Fig. S23 Single-site Langmuir-Freundlich (L-F) model fitting for C_3H_6 isotherm of 1 at 298 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	В	
A1	1.7088 ± 0.02225	
b1	0.73019 ± 0.01657	
c1	0.43056 ± 0.01079	
Reduced Chi-Sqr	1.52131E-4	
R-Square (COD)	0.9984	
Adj. R-Square	0.99829	

Fig. S24 Single-site Langmuir-Freundlich (L-F) model fitting for C_3H_8 isotherm of 1 at 273 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	D	
A1	1.42986 ± 0.01183	
b1	0.48853 ± 0.00545	
c1	0.54551 ± 0.00879	
Reduced Chi-Sqr	5.42528E-5	
R-Square (COD)	0.99938	
Adj. R-Square	0.99933	

Fig. S25 Single-site Langmuir-Freundlich (L-F) model fitting for C_3H_8 isotherm of 1 at 298 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	В	
A1	3.53072 ± 0.02869	
b1	0.3575 ± 0.00471	
c1	0.72825 ± 0.01304	
Reduced Chi-Sqr	0.00103	
R-Square (COD)	0.99887	
Adj. R-Square	0.99881	

Fig. S26 Single-site Langmuir-Freundlich (L-F) model fitting for C_2H_4 isotherm of $1 \cdot K$ at 273 K.

LFUser (User)	
A1*b1*x^c1/(1+b1*x^c1)	
D	
3.36107 ± 0.02946	
0.15083 ± 0.00159	
0.78199 ± 0.01007	
3.42477E-4	
0.9996	
0.99958	

Fig. S27 Single-site Langmuir-Freundlich (L-F) model fitting for C_2H_4 isotherm of $1 \cdot K$ at 298 K.

Model	LFUser User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	В	
A1	3.10265 ± 0.02924	
b1	0.30019 ± 0.00543	
c1	0.81192 ± 0.01836	
Reduced Chi-Sqr	0.00138	
R-Square (COD)	0.99814	
Adj. R-Square	0.99804	

Fig. S28 Single-site Langmuir-Freundlich (L-F) model fitting for C_2H_6 isotherm of $1 \cdot K$ at 273 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	D	
A1	2.81076 ± 0.02288	
b1	0.12928 ± 0.00174	
c1	0.87445 ± 0.01199	
Reduced Chi-Sqr	3.25436E-4	
R-Square (COD)	0.99952	
Adj. R-Square	0.99949	

Fig. S29 Single-site Langmuir-Freundlich (L-F) model fitting for C_2H_6 isotherm of $1 \cdot K$ at 298 K.

Fig. S30 Single-site Langmuir-Freundlich (L-F) model fitting for C_2H_4 isotherm of 1 at 273 K.

Model	LFUser (User)	
Equation	A1*b1*x^c1/(1+b1*x^c1)	
Plot	D	
A1	2.18406 ± 0.03134	
b1	0.06558 ± 6.96526E-4	
c1	0.664 ± 0.00511	
Reduced Chi-Sqr	1.90573E-5	
R-Square (COD)	0.99989	
Adj. R-Square	0.99988	

Fig. S31 Single-site Langmuir-Freundlich (L-F) model fitting for C_2H_4 isotherm of 1 at 298 K.

Fig. S32 Single-site Langmuir-Freundlich (L-F) model fitting for C₂H₆ isotherm of 1

Fig. S33 Single-site Langmuir-Freundlich (L-F) model fitting for C₂H₆ isotherm of **1** at 298 K.

Fig. S34 IAST selectivities of 1 and $1 \cdot K$ for equimolar C_2H_4/C_2H_6 at 298 K.

Fig. S35 Outlet C₃H₆ (red) and C₃H₈ (blue) compositions of the adsorption-desorption

cycle in the breakthrough experiment for 1 (a) and $1 \cdot K$ (b)

Fig. S36 The single dynamic breakthrough curves of 1 (a) and $1 \cdot K$ (b) with equimolar C_2H_4/C_2H_6 gas mixtures at 298 K and 100 kPa. (c) Cycling stability of $1 \cdot K$.

S4 Supplementary tables

Sample	K (µg/mL)	Cu (µg/mL)	Zn (µg/mL)	Cu : K (% at. / % at.)
1·K	2.62	13.1	/	3:1

Table S1 ICP analysis results of 1·K.

Table S2 Summary of the adsorption capacity of C_3H_6 and C_3H_8 and C_3H_6/C_3H_8

No	MOFs	C ₃ H ₆ uptake (cm ³ g ⁻¹)	C ₃ H ₈ uptake (cm ³ g ⁻¹)	IAST selectivity (50/50)	Conditions	Refs
1	CuBTC	179.20	152.32	/	323K, 100kPa	1
2	KAUST-7	32.00	1.20	/	298K, 100kPa	2
3	Zn ₂ (dobdc)	140.90	122.30	3.89	318K, 100kPa	3
4	Mg ₂ (dobdc)	167.10	134.40	5.55	318K, 100kPa	3
5	NJU-Bai8	60.48	1.34	4.60	298K, 20kPa	4
6	GeFSIX-2-Cu-i	60.26	40.54	4.00	298K, 100kPa	5

(50/50) selectivity in some MOFs.

7	SiFSIX-2-Cu-i	59.36	37.41	4.50	298K, 100kPa	5
8	Ni-NP	79.97	47.71	10.5	298K, 100kPa	6
9	MAF-23-0	30.2	22.4	8.80	298K, 100kPa	7
10	HIAM-301	70.784	0.67	150	298K, 100kPa	8
11	JNU-3a	58.60	48.0	513	303K, 100kPa	9
12	NTU-85-WNT	10.15	0.06	1570.3	298K, 100kPa	10
13	1	33.8	27.7	2.20	298K, 100kPa	This work
14	1·K	64.5	53.0	4.38	298K, 100kPa	This work

References

- 1 N. Lamia, M. Jorge, M. A. Granato, F. A. Almeida Paz, H. Chevreau and A. E. Rodrigues, Chem. Eng. Sci., 2009, **64**, 3246-3259.
- 2 A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout and M. Eddaoudi, *Science*, 2016, **353**, 137-140.
- S. J. Geier, J. A. Mason, E. D. Bloch, W. L. Queen, M. R. Hudson, C. M. Brown and J. R. Long, *Chem. Sci.*, 2013, 4, 2054-2061.
- 4 X. Wang, R. Krishna, L. Li, B. Wang, T. He, Y.-Z. Zhang, J.-R. Li and J. Li, *Chem. Eng. J.*, 2018, **346**, 489-496.
- 5 X. Wang, P. Zhang, Z. Zhang, L. Yang, Q. Ding, X. Cui, J. Wang and H. Xing, *Ind. Eng. Chem. Res.*, 2020, **59**, 3531-3537.
- 6 Y. Xie, Y. Shi, H. Cui, R.-B. Lin and B. Chen, *Small Struct.*, 2022, **3**, 2100125.
- Y. Wang, N. Y. Huang, X. W. Zhang, H. He, R. K. Huang, Z. M. Ye, Y. Li, D. D. Zhou, P. Q. Liao, X. M. Chen and
 J. P. Zhang, *Angew. Chem. Int. Ed.*, 2019, 58, 7692-7696.
- L. Yu, X. Han, H. Wang, S. Ullah, Q. Xia, W. Li, J. Li, I. da Silva, P. Manuel, S. Rudic, Y. Cheng, S. Yang, T. Thonhauser and J. Li, *J. Am. Chem. Soc.*, 2021, **143**, 19300-19305.
- 9 H. Zeng, M. Xie, T. Wang, R. J. Wei, X. J. Xie, Y. Zhao, W. Lu and D. Li, *Nature*, 2021, **595**, 542-548.
- 10 Q. Dong, Y. Huang, J. Wan, Z. Lu, Z. Wang, C. Gu, J. Duan and J. Bai, *J. Am. Chem. Soc.*, 2023, **145**, 8043-8051.