## One-dimensional infinite chain Ag(I) complex with high quantum yield and TADF property: prepared by metal ion adjustment

Zhen-Zhou Sun, ‡<sup>a</sup> Fu-Zhen Hu ‡<sup>a</sup>, Cheng-Jie Gao ‡<sup>a</sup>, Wen-Long Mou, <sup>a</sup> Guo Wang, <sup>a</sup> Ning Zhu, <sup>a</sup> Xun Pan, <sup>a</sup> Zhong-Feng Li, <sup>a</sup> Hong-Liang Han, <sup>a</sup> Hongbing Fu <sup>a</sup> Xiu-Lan Xin, \*<sup>b</sup> Lixiong Dai \*<sup>c</sup> Qiong-Hua Jin \*<sup>a, d, e, f</sup> and Qi-Ming Qiu <sup>g</sup>

<sup>a</sup> Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China. E-mail: jinqh@cnu.edu.cn, jinqh204@163.com.

<sup>b</sup> School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.

<sup>c</sup> Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000,
 China. E-mail: dailx@ucas.ac.cn.

<sup>d</sup> State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian 350002, China.

<sup>e</sup> Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),
 Nankai University, Tianjin 300071, China.

<sup>f</sup> State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

<sup>g</sup> School of Science, China University of Geosciences, Beijing 100083, China

<sup>‡</sup>These authors contributed equally to this work.

Characterization and physical measurements



Fig. S1 The IR spectra for complexes AgDpq, CuDpq, Agphen, Cuphen.



Fig. S2 <sup>1</sup>H NMR spectrum of AgDpq at room temperature.



Fig. S3 <sup>1</sup>H NMR spectrum of CuDpq at room temperature.



Fig. S4 <sup>1</sup>H NMR spectrum of Cuphen at room temperature.



Fig. S5 <sup>31</sup>P NMR spectrum of AgDpq at room temperature.



Fig. S6 <sup>31</sup>P NMR spectrum of CuDpq at room temperature.



Fig. S7 <sup>31</sup>P NMR spectrum of Cuphen at room temperature.



**Fig. S8** The PXRD patterns for complexes **AgDpq** simulated from single crystal data (Black) and single-phase polycrystalline sample.



**Fig. S9** The PXRD patterns for complexes **CuDpq** simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).



**Fig. S10** The PXRD patterns for complexes **Cuphen**, simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).



Fig. S11 Thermal stability curves for complexes AgDpq, CuDpq, Cuphen.



**Fig. S12** (a) The structure of complex **Cuphen**. (b) The packing structure of complex **Cuphen**, including C-H··· $\pi$  bonds (2.79, 2.79, 2.88, 2.85, and 2.91 Å), C-H···O bonds (2.58, 2.43, 2.56, 2.42, 2.32, 2.35, 2.46, 2.36, 2.49, 2.37 and 2.55 Å), and Ag·· $\pi$  (3.830, 3.791, and 3.903 Å).



**Fig. S13** (a) Absorption spectra of complexes **Agphen**, **Cuphen** and ligands. (b) Excitation spectra of **Agphen**, **Cuphen** at room temperature.



**Fig. S14** (a) Emission lifetimes of **AgDpq** at room temperature. (b) Emission lifetimes of **CuDpq** at ambient temperature.



Fig. S15 HOMO and LUMO distribution and calculated frontier orbital energies, singlet  $(S_1)$ , triplet  $(T_1)$  energy levels for complexes **AgDpq** and **CuDpq** based on their  $S_0$  geometries.



**Fig. S16** (a) Emission lifetimes of **Agphen** at ambient temperature. (b) Emission lifetimes of **Cuphen** at ambient temperature.



Fig. S17 Frontier MOs for singlet  $(S_0)$  states of the fully optimized Cuphen cation.

## 3. Crystallographic data

| AgDpq      |            |                 |             |
|------------|------------|-----------------|-------------|
| Ag(1)-P(1) | 2.4444(12) | P(1)-Ag(1)-P(2) | 114.89(4)   |
| Ag(1)-P(2) | 2.4609(13) | N(2)-Ag(1)-P(1) | 126.90(12)  |
| Ag(1)-N(2) | 2.349(4)   | N(2)-Ag(1)-P(2) | 107.10(11)  |
| Ag(1)-N(1) | 2.388(4)   | N(2)-Ag(1)-N(1) | 70.58(14)   |
|            |            | N(1)-Ag(1)-P(1) | 108.39(10)  |
|            |            | N(1)-Ag(1)-P(2) | 123.04(11)  |
| CuDpq      |            |                 |             |
| Cu(1)-P(1) | 2.2223(4)  | P(1)-Cu(1)-P(2) | 102.573(17) |
| Cu(1)-P(2) | 2.2413(5)  | N(2)-Cu(1)-P(2) | 116.86(4)   |
| Cu(1)-N(1) | 2.0364(13) | N(2)-Cu(1)-P(1) | 123.36(4)   |
| Cu(1)-N(2) | 2.0768(14) | N(1)-Cu(1)-P(2) | 108.50(4)   |
|            |            | N(1)-Cu(1)-P(1) | 124.18(4)   |
|            |            | N(1)-Cu(1)-N(2) | 80.82(5)    |
| Cuphen     |            |                 |             |
| Cu(1)-P(2) | 2.2442(5)  | P(1)-Cu(1)-P(2) | 102.458(17) |
| Cu(1)-P(1) | 2.2223(5)  | N(1)-Cu(1)-P(2) | 107.94(4)   |
| Cu(1)-N(1) | 2.1077(14) | N(1)-Cu(1)-P(1) | 128.69(4)   |
| Cu(1)-N(2) | 2.0274(14) | N(2)-Cu(1)-P(2) | 115.59(4)   |
| Cu(2)-P(3) | 2.2537(5)  | N(2)-Cu(1)-P(1) | 120.68(4)   |
| Cu(2)-P(4) | 2.2442(4)  | N(2)-Cu(1)-N(1) | 81.18(6)    |
| Cu(2)-N(6) | 2.1026(14) | P(4)-Cu(2)-P(3) | 97.388(16)  |
| Cu(2)-N(5) | 2.0522(14) | N(6)-Cu(2)-P(3) | 123.09(4)   |
|            |            | N(6)-Cu(2)-P(4) | 119.46(4)   |
|            |            | N(5)-Cu(2)-P(3) | 110.01(4)   |
|            |            | N(5)-Cu(2)-P(4) | 128.38(4)   |
|            |            | N(5)-Cu(2)-N(6) | 80.76(5)    |

 Table S1 The selected bond distances and angles for complexes.

|        | C-H→Cg(i)/(A)                | Cg                      | Symmetry code      | H…Cg(A) / Å |
|--------|------------------------------|-------------------------|--------------------|-------------|
| AgDpq  | C26-H26 $\rightarrow$ Cg(9)  | C34-C35-C36-C37-C38-C39 | x, y, z            | 2.87        |
|        | C29-H29→Cg(7)                | C21-C22-C23-C24-C25-C26 | 1-x, 1-y, 1-z      | 2.67        |
|        | C33-H33A $\rightarrow$ Cg(3) | N2-C6-C7-C8-C9-C10      | x, 3/2-y, 1/2+z    | 2.79        |
|        | C33-H33B $\rightarrow$ Cg(1) | Ag1-N1-C5-C6-N2         | x, 3/2-y, 1/2+z    | 2.63        |
|        | C23-H23-N3                   | /                       | 1-x, 1-y, 1-z      | 2.55        |
|        | C45-H45-O2                   | /                       | /                  | 2.40        |
| CuDpq  | C14-H14→Cg(11)               | C40-C41-C42-C43-C44-C45 | 1-x, -1/2+y, 1/2-z | 2.97        |
|        | C17-H17→Cg(8)                | C21-C22-C23-C24-C25-C26 | x, 1+y, z          | 2.95        |
|        | C38-H38→Cg(3)                | N1-C1-C2-C3-C4-C5       | x, 1+y, z          | 2.92        |
|        | C1-H1…O1                     | /                       | -1-x, 1-y, 1-z     | 2.37        |
|        | C9-H9F2                      | /                       | 1-x, -1/2-y, 1/2-z | 2.44        |
|        | C19-H19O1                    | /                       | -1+x, y, z         | 2.52        |
|        | C33-H33A…O1                  | /                       | -1-x, 1-y, 1-z     | 2.56        |
|        | C42-H42O3                    | /                       | 1-x, 1/2+y, 1/2-z  | 2.49        |
| Cuphen | C20-H20→Cg1                  | Cu1-N1-C6-C5-N2         | x, y, z            | 2.89        |
|        | C22-H22→Cg19                 | C48-C49-C50-C51-C55-C56 | -x, 1-y, 1-z       | 2.73        |
|        | C23-H23→Cg14                 | C7-C8-C9-C10-C12-C11    | -x, 1-y, 1-z       | 2.70        |
|        | C71-H71→Cg3                  | N1-C6-C7-C8-C9-C10      | 1-x, -y, 1-z       | 2.90        |
|        | C72-H72→Cg6                  | C4-C5-C6-C7-C11-C12     | 1-x, -y, 1-z       | 2.64        |
|        | С1-Н1…О3                     | /                       | /                  | 2.55        |
|        | C18-H18AO3                   | /                       | /                  | 2.48        |
|        | C46-H46O2                    | /                       | 1–x, 1-y, 1-z      | 2.48        |
|        | C54-H54O6                    | /                       | -1+x, y, z         | 2.40        |

Table S2 Weak interactions for complexes.

**Table S3** Compositions of HOMO and LUMO in the  $S_1$  state of complexes AgDpq and**CuDpq** in the optimized  $S_0$  structure.

|       | Orbital | Energy / eV | Contributions / % |       |       |
|-------|---------|-------------|-------------------|-------|-------|
|       |         |             | Ag/Cu             | Ν     | Р     |
| AgDpq | LUMO+1  | -4.44       | 1.72              | 94.13 | 4.15  |
|       | HOMO-1  | -7.29       | 1.58              | 0.62  | 97.80 |
| CuDpq | LUMO    | -5.02       | 2.26              | 94.71 | 3.03  |
|       | HOMO-1  | -8.23       | 38.77             | 4.83  | 56.40 |

**Table S4** Energy, oscillator strength and major contribution of the calculated transitionsfor complexes AgDpq, CuDpq and Cuphen.

| Excited state | Energy    | Oscillator | Major contribution %    |
|---------------|-----------|------------|-------------------------|
|               |           | strength   |                         |
| AgDpq         | 2.6731 eV | 0.0085     | HOMO -> LUMO 3.84       |
| absorption    | 463.83 nm |            | HOMO -> LUMO+1 93.33    |
| AgDpq         | 4.8833 eV | 0.1590     | HOMO-29 -> LUMO 11.55   |
| absorption    | 253.89 nm |            | HOMO-28 -> LUMO 17.48   |
|               |           |            | HOMO-27 -> LUMO+1 11.58 |
|               |           |            | HOMO-26 -> LUMO 8.64    |
|               |           |            | HOMO-26 -> LUMO+1 3.09  |
|               |           |            | HOMO-21 -> LUMO+2 4.91  |
|               |           |            | HOMO-20 -> LUMO+2 6.75  |
|               |           |            | HOMO-3 -> LUMO+5 4.70   |
|               |           |            | HOMO-3 -> LUMO+6 2.27   |
| AgDpq         | 2.4002 eV | 0.0036     | LUMO+1 -> HOMO-2 3.92   |
| emission      | 516.56 nm |            | LUMO+1 -> HOMO-1 92.86  |
| CuDpq         | 2.8562 eV | 0.0764     | HOMO-1 -> LUMO 92.42    |
| absorption    | 434.08 nm |            | HOMO-1 -> LUMO+1 6.21   |
| CuDpq         | 4.9138 eV | 0.5005     | HOMO-18 -> LUMO+2 12.99 |
| absorption    | 252.32 nm |            | HOMO-17 -> LUMO+2 9.64  |
|               |           |            | HOMO-16 -> LUMO+2 4.00  |

|            |           |        | HOMO-14 -> LUMO 14.41                     |
|------------|-----------|--------|-------------------------------------------|
|            |           |        | HOMO-14 -> LUMO+2 3.61                    |
|            |           |        | HOMO-1 -> LUMO+5 3.14                     |
|            |           |        | HOMO-1 -> LUMO+11 2.90                    |
| CuDpq      | 2.6263 eV | 0.0974 | LUMO -> HOMO-1 97.81                      |
| emission   | 472.08 nm |        |                                           |
| Cuphen     | 4.6879 eV | 0.1386 | $HOMO-15 \rightarrow LUMO  (21.55)$       |
| absorption | 264.48 nm |        | $HOMO-15 \rightarrow LUMO+1  (2.80)$      |
|            |           |        | $HOMO-12 \rightarrow LUMO+1  (4.50)$      |
|            |           |        | $HOMO-5 \rightarrow LUMO+1 \qquad (4.15)$ |
|            |           |        | HOMO-4 $\rightarrow$ LUMO+1 (6.30)        |
|            |           |        | HOMO-3 $\rightarrow$ LUMO+2 (10.06)       |
|            |           |        | HOMO-2 $\rightarrow$ LUMO+5 (20.45)       |
|            |           |        | $HOMO \rightarrow LUMO+11  (10.66)$       |
| Cuphen     | 2.5319 eV | 0.0198 | HOMO-3 $\rightarrow$ LUMO (8.03)          |
| emission   | 489.69 nm |        | HOMO-2 $\rightarrow$ LUMO (28.55)         |
|            |           |        | HOMO-1 $\rightarrow$ LUMO (59.20)         |

HOMO-15 -> LUMO+2 26.11