Electronic Supplementary Information (ESI)⁺

Cocrystallization of multi-kinase inhibitor pazopanib with fenamic acids: Improving dissolution and inhibiting cell migration

Sunil K. Rai,*^{ac} Anilkumar Gunnam,^b Debopriya Roy,^{de} Raveena Rajput,^d Kiran Kulkarni^{de} and Ashwini K. Nangia*^{bc}

- ^a Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
- ^{b.}School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Central University P.O., Hyderabad 500 046, India
- ^{c.}Division of Organic Chemistry, CSIR National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- ^d·Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008

^{e.} Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India Email: <u>sunilbhu28@gmail.com</u>, <u>ashwini.nangia@gmail.com</u>

Fig. S1. ORTEP diagram of PAZ⁺·FFA⁻·ACN form I. Thermal ellipsoids are drawn at 50% probability level.

Fig. S2. ORTEP diagram of PAZ⁺·FFA⁻·ACN form II. Thermal ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for clarity of the picture and molecular colors are shown by symmetry equivalence.

Fig. S3. ORTEP diagram of PAZ⁺·NFA⁻. Thermal ellipsoids are drawn at 50% probability level.

Fig. S4. Fourier difference maps for PAZ⁺·FFA⁻·ACN form I showing the electron density in heterodimer '2-aminopyrimidine and –COOH' with the hydrogen atoms in the linking hydrogen bonds omitted from the models. For atom numbering see ORTEP diagram.

Fig. S5. Fourier difference maps for PAZ⁺·NFA⁻ showing the electron density in heterodimer '2-aminopyrimidine and –COOH' with the hydrogen atoms in the linking hydrogen bonds omitted from the models. For atom numbering see ORTEP diagram.

Table S1.	Geometrical	Parameters	of	Potential	Intra-	and	Intermolecular	Interactions	in
PAZ+•FFA	-•ACN form l	and II and I	PAZ	Z⁺•NFA⁻.					

D –H···A	H…A (Å)	D…A (Å)	D-H···A (deg)	symmetry code
		PAZ+•FFA-•ACN (I)		
N5-H5-···O4	1.92	2.7601(1)	175	1-x,-y,1-z
N6-H6····O3	1.85	2.7373(1)	175	1-x,-y,1-z
N7–H7A…N9	2.16	2.9938(1)	163	1-x,1-y,-z
N7–H7B…O4	1.97	2.8457(1)	173	x,1+y,z
N8–H8A…O3	1.82	2.5967(1)	149	Intra
С13-Н13…О2	2.48	3.0338(1)	117	-1+x,y,z
C16-H16N4	2.36	2.9546(1)	121	Intra
C16–H16…N7	2.57	3.0054(1)	108	Intra
С20-Н20-О3	2.45	3.2178(1)	138	1-x,-y,1-z
С21–Н21С…О2	2.51	3.0762(1)	117	Intra
С24–Н24…О4	2.43	2.7648(1)	101	Intra
		PAZ+•FFA-•ACN (II)		
N5–H5…O3	1.82	2.674(3)	176	2-x,1-y,1-z
N6-H6····O4	1.93	2.771(3)	167	2-x,1-y,1-z
N7–H7A…N11	2.39	3.130(3)	158	1+x,y,z
N7–H7B…O3	1.83	2.847(3)	168	x,y,z
N8–H8A…O4	2.07	2.676(3)	127	Intra
N14-H14…O7	1.64	2.684(3)	173	1-x,1-y,-z

N15-H1508	1.96	2.795(3)	165	1-x,1-y,-z
N16–H16A…O7	1.91	2.901(3)	169	x,y,z
N16-H16B…N2	2.24	3.039(3)	171	x,y,z
N17–H17…O8	2.06	2.690(3)	130	Intra
С1-Н1С…О1	2.47	3.226(4)	136	x,-1+y,z
C10-H10C…N4	2.29	2.741(3)	108	Intra
С16-Н16…О2	2.38	2.826(3)	108	Intra
C20-H20···N4	2.37	2.879(3)	115	Intra
C21–H21A…O1	2.53	2.950(3)	107	Intra
C24–H24…O3	2.45	2.784(3)	101	Intra
С34–Н34…О2	2.50	3.411(4)	168	2-x,1-y,1-z
С36–Н36…О5	2.40	2.813(3)	107	Intra
С38–Н38В…Об	2.44	3.359(4)	160	-1+x,1+y,z
С39–Н39С…F5	2.52	3.286(4)	137	-x,2-y,-z
C47–H47A…N13	2.27	2.728(3)	108	Intra
C57–H57…N13	2.40	2.907(3)	114	Intra
С58–Н58А…Об	2.40	2.999(3)	121	Intra
С61-Н61…О7	2.45	2.780(3)	101	Intra
С71–Н71…О5	2.41	3.299(4)	160	1-x,1-y,-z
С74–Н74С…О1	2.48	3.356(4)	152	2-x,1-y,1-z
		PAZ ⁺ •NFA ⁻		
N5-H3····O4	1.75	2.6589(1)	173	-x,1/2+y,1/2-z
N6-H4····O3	1.83	2.7578(1)	172	-x,1/2+y,1/2-z
N7–H5A…N2	2.10	2.9399(1)	163	1-x,-1/2+y,1/2-z
N7–H5B…O3	1.98	2.8646(1)	172	1-x,1/2+y,1/2-z
N8–H7…O4	1.85	2.6423(1)	144	Intra
C1-H1C…O1	2.58	3.4797(2)	153	1-x,1-y,1-z
С13-Н13-О2	2.37	3.3183(2)	178	-x,1/2+y,1/2-z
С16-Н16…О1	2.40	2.8261(1)	107	Intra
C16-H16…N4	2.31	2.9182(1)	121	Intra
С20–Н20…О3	2.56	3.2786(1)	132	-x,1/2+y,1/2-z
C21–H21A…O2	2.28	2.9854(1)	128	Intra
C21–H21C…F3	2.46	3.2506(1)	138	-1+x,1/2-y,-1/2+z
С29–Н29…О2	2.59	3.4396(2)	149	x,y,z
С33-Н33…N9	2.34	2.9417(1)	120	Intra

Fig. S6. PXRD pattern overlay of pazopanib (PAZ), residual solid of PAZ in pH 1.2 equilibrium solubility medium (PAZ-EQS), flufenamic acid (FFA), PAZ·FFA·ACN-I, PAZ·FFA·ACN-II and acetonitrile drop grinding preparation of PAZ·FFA·ACN-II (PAZ·FFA·ACN-LAG), residual solid in pH 1.2 equilibrium solubility medium of PAZ·FFA·ACN-II (PAZ·FFA·ACN-EQS), and undissolved solid of PAZ·FFA·ACN-II after dissolution experiment under pH 1.2 dissolution medium.

Fig. S7. PXRD pattern overlay of FFA, residue in the pH 1.2 equilibrium solubility medium, and left over solid after dissolution experiment under pH 1.2 dissolution medium.

Fig. S8. PXRD pattern overlay of pazopanib hydrochloride (PZH) and, residue PAZ in the pH 1.2 equilibrium solubility medium. PXRD pattern of PZH was taken from published data in *Powder Diffr.*, **2021**, 36, 205-207.

Fig. S9. DSC (red line) and TGA (black line) overlay of PAZ⁺·FFA⁻·ACN for heat-cool cycles. First heating cycle 30-120°C with heating rate 10°C/min with an isotherm at 120 °C for 15 minutes followed by cooling to 30 °C with heating rate 10°C/min. After an isotherm at 30°C for 15 minutes a second heating cycle 30-350°C with heating rate 10°C/min was performed.

Fig. S10. PXRD pattern overlay of PAZ·FFA·ACN-I simulated from SC-XRD (red), PAZ·FFA·ACN-II simulated from SC-XRD (blue), acetonitrile drops grinding preparation of PAZ·FFA·ACN-II (green), and after heating grinding preparation (maroon). The highlighted regions showed a significant difference in diffraction pattern.

Fig. S11. ¹H NMR spectra of acetonitrile drops grinding preparation of PAZ·FFA·ACN sample before and after heating at 120 °C for one hour. Spectra were recorded at 400 MHz in DMSO- d_6 solvent.