Supplementary Material for

Cyano Benzene Functionalized Ni and Cu Bisdithiolene Complexes

António Costa,^[a] Gonçalo Lopes,^[a] Susana Ribeiro,^[a] Isabel C. Santos,^[a] Dulce Simão,^[b] Laura C.J. Pereira,^[a] Nolwenn Le Breton,^[c] Sylvie Choua,^[c] Stéphane A. Baudron,^[d] Manuel Almeida,^[a] Sandra Rabaça^{*[a]}

- [a] A. Costa, G. Lopes, S. Ribeiro, Dr. I.C. Santos, Dr. L.C.J. Pereira, Dr. M. Almeida, Dr. S. Rabaça Centro de Ciências e Tecnologias Nucleares, IST-ID, Departamento de Engenharia e Tecnologias Nucleares, IST Universidade de Lisboa Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal. E-mail: sandrar@ctn.tecnico.ulisboa.pt
 [b] Dr. D. Simão Centro de Química Estrutural, IST-ID, Departamento de Engenharia Química, IST, Universidade de Lisboa Av. Rovisco Pais, 1049-001, Lisboa, Portugal
 [c] Dr. N. Le Breton, S. Choua
- Institut de Chimie, UMR CNRS 7177, Université de Strasbourg Institut Le Bel, 4 rue Blaise Pascal, 67000 Strasbourg, France
- [d] Dr. Stéphane A. Baudron
 CNRS, CMC UMR 7140
 Université de Strasbourg,
 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France

	[M(L) ₂] ⁰ /[M(L] ₂] ⁻ (V)	[M(L) ₂] ⁻ /[M(L] ₂] ²⁻ (V)	Solvent	Ref
[Ni(4-cbdt) ₂]	+0.20	-0.51	CH₃CN	1
[Ni(3-cbdt) ₂]	+0.281	-0.31	CH₃CN	This work
[Cu(4-cbdt) ₂]	+0.69	-0.64	CH₃CN	1
[Cu(3-cbdt) ₂]	+0.71	-0.61	CH ₃ CN	This work
			_	

Table SM1: Cyclic voltammetry data of [M(L)2] (M= Ni, Cu); L=3-cbdt and 4-cbdt in acetonitrile (ref. Ag/AgNO3)

 Cerdeira, Ana C., et al. "Synthesis, structure and physical properties of transition metal bis 4-cyanobenzene-1, 2-dithiolate complexes [M (cbdt) 2] z–(M= Zn, Co, Cu, Au, Ni, Pd, z= 0, 1, 2)." Polyhedron 44.1 (2012): 228-237.

Figure SM1. ORTEP diagram of **α1**.

Figure SM2. ORTEP diagram of β 1. For clarity, the TPP numbering scheme was omitted.

Figure SM3. ORTEP diagram of **1CH₃CN**. For clarity, the TPP numbering scheme was omitted.

Figure SM4. ORTEP diagram of **α3**.

Figure SM5. ORTEP diagram of β 3. For clarity, the TPP numbering scheme was omitted.

Figure SM6. ORTEP diagram of $\alpha 2$.

Figure SM7. ORTEP diagram of α **4**. For clarity, the TPP numbering scheme was omitted.

Figure SM8. ORTEP diagram of β 4.

Table SM2: Intermolecular bond lengths (Å) in dianionic and monanionic dithiolene complexes $[Ni(3-cbdt)_2]^{-n}$, (n=1, 2).)

$N_{1} \\ C_{7} \\ N_{1} \\ C_{7} \\ C_{6} \\ C_{5} \\ N_{1} \\ C_{7} \\ C_{6} \\ C_{5} \\ C_{5} \\ C_{5} \\ C_{4} \\ C_{3} \\ C_{4} \\ C_{4} \\ C_{5} \\ C_{4} \\ C_{5} \\ C_{4} \\ C_{5} \\ C_{5} \\ C_{4} \\ C_{5} \\ C_{5$		monoanion		
	α-1	β-1	1.CH3CN	2-α
Ni-S1	2.1664	2.176	2.176	2.1552
		2.140	2.140	
Ni-S2	2.1793	2.168	2.168	2.1407
		2.189	2.189	
S1-C1	1.733(2)	1.737(7)	1.737(7)	1.726(4)
		1.737(6)	1.737(6)	
S2-C2	1.744(2)	1.72(1)	1.72(1)	1.742(3)
		1.718(7)	1.718(7)	
C1-C2	1.406(3)	1.41(1)	1.41(1)	1.395(4)
		1.397(9)	1.397(9)	
C2-C3	1.397(3)	1.39(1)	1.39(1)	1.397(5)

		1.408(8)	1.408(8)	
C3-C4	1.382(4)	1.41(2)	1.41(2)	1.368(5)
		1.36(1)	1.36(1)	
C4-C5	1.369(4)	1.37(2)	1.37(2)	1.384(6)
		1.36(1)	1.36(1)	
C6-C5	1.400(4)	1.39(1)	1.39(1)	1.366(5)
		1.41(1)	1.41(1)	
C1-C6	1.414(3)	1.41(2)	1.41(2)	1.423(4)
		1.38(1)	1.38(1)	
C6-C7	1.429(4)	1.42(2)	1.42(2)	1.436(5)
		1.40(1)	1.40(1)	
C7-N1	1.142(4)	1.15(1)	1.15(1)	1.136(5)
		1.15(1)	1.15(1)	

Table SM2: Intermolecular bond lengths (Å) in dianionic and monanionic dithiolene complexes $[Cu(3-cbdt)_2]^{-n}$, (n=1, 2).)

$\begin{array}{c} N_{1} \\ \\ C_{7} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	diar	dianion		panion
	α-3	β-3	α-4	β-4
Cu-S1	2.2536	2.287	2.172	2.183(4)
		2.262		2.171(4)
Cu-S2	2.2769	2.2539	2.170	2.163(4)
		2.2814		2.183(4)
S1-C1	1.726(3)	1.746(3)	1.740(6)	1.75(1)
		1.751(3)		1.73(1)
S2-C2	1.739(3)	1.734(4)	1.753(6)	1.72(1)
		1.740(4)		1.78(1)
C1-C2	1.409(4)	1.405(5)	1.373(7)	1.39(2)
		1.407(5)		1.42(2)

C2-C3	1.394(5)	1.404(5)	1.38(1)	1.36(2)
		1.400(4)		1.38(2)
C3-C4	1.376(5)	1.377(9)	1.38(1)	1.38(2)
		1.370(6)		1.36(2)
C4-C5	1.365(6)	1.367(8)	1.379(9)	1.36(2)
		1.369(6)		1.38(2)
C6-C5	1.408(6)	1.403(6)	1.38(1)	1.38(2)
		1.403(5)		1.36(2)
C1-C6	1.409(4)	1.411(7)	1.410(8)	1.41(2)
		1.397(6)		1.38(2)
C6-C7	1.434(5)	1.437(8)	1.424(8)	1.45(2)
		1.430(6)		1.43(2)
C7-N1	1.140(6)	1.150(8)	1.131(8)	1.14(2)
		1.146(6)		

Table SM3: Short contacts list of compound c
--

	Short Contacts	Symmetry operation (*)	Length (Å)	Length-∑VdW (Å)	
anion-anion	C5C5	-x,1-y,11-z	3.446	0.046	$\pi\pi^{*1}$
	C5-H5H5	-x,1-y,-z	2.943	0.043	C-Hπ ^{*1}
cation-cation	C10-H10C27	1-x, 2-y,1-z	2.994	0.094	С-Нπ
	C10-H10C28	1-x, 2-y,1-z	2.820	-0.080	С-Нπ
anion-cation	S2H17	1-x,2-y,-z	2.933	-0.067	
	S2H22	x,y,z	2.965	-0.035	
	C25-H25C4	1+x,y,z	2.975	0.075	С-Нπ
	C25-H25C3	1+x,y,z	2.910	0.010	С-Нπ
	C25-H25C2	1+x,y,z	2.907	0.007	С-Нπ
	C27-H27N1-C7	-x,1-y,1-z	2.532	-0.218	C-HN≡C
	C29-H29N1-C7	x,1+y,x	2.729	-0.021	C-HN≡C

*1 offset pi/pi stacking

Table SM4: Short contacts list of compound α -3

	Short Contacts	Symmetry operation (*)	Length (Å)	Length-∑VdW (Å)	
anion-anion	C5C5	1-x,1-y,1-z	3.440	0.040	$\pi\pi^{*1}$
	C5H5	1-x,1-y,1-z	2.929	0.029	C-Hπ ^{*1}
cation-cation	C16-H16C9	-x,-y,1-z	2.992	0.092	С-Нπ
	C16-H16C10	-x,-y,1-z	2.832	-0.068	С-Нπ
anion-cation	S2H29	1+x,1+y,-1+z	2.932	-0.068	
	S2H24	1-x,1-y,1-z	2.980	-0.020	
	C21-H21C2	-x,1-y,1-z	2.899	-0.001	С-Нπ
	C21-H21C3	-x,1-y,1-z	2.896	-0.004	С-Нπ
	C9-H9N1-C7	x,y,z	2.529	-0.221	C-HN≡C
	C11-H11N1-C7	1-x,-y,1-z	2.747	-0.003	C-HN≡C

*1 offset pi/pi stacking

Figure SM9. Detail of the C5…C5 and C5…H5 interactions in compound $\alpha\text{-}1$

Figure SM10. Structural detail of the $R_4^2(12)$ synthons mediated by the C-H···N=C short contacts, in α -1 (left) and α -3 (right).

Table SM5: Short contact list of compound $\beta 1$

	Short Contacts	Symmetry operation (*)	Length (Å)	Length-∑VdW (Å)	
anion-anion	C4-H4N2≡C14	x,y,z	2.626	-0.124	C-HN≡C
cation-cation	C18C47	x,y,z	3.308	-0.092	$\pi \pi^{*1/2}$
anion-cation	S1H35	x,y,z	2.912	-0.088	
	S1H59	x,-1+y,z	2.874	-0.126	
	S2H24	1-x,-y,1-z	2.993	-0.007	
	S2H58	1-x,1-y,-z	2.749	-0.251	
	S3H18	1-x,1-y,1-z	2.681	-0.319	
	C60-H60N1-C7	2-x,1-y,-z	2.667	-0.083	C-HN≡C
	C19-H19N2-C14	x,y,z	2.539	-0.211	C-HN≡C
	C43-H43N2-C14	x,y,z	2.588	-0.162	C-HN≡C
	C11-H11C35	1-x,-y,1-z	2.836	-0.064	C-Hπ ^{*1}
	C26-H26C9	1-x,-y,1-z	2.679	-0.221	C-Hπ ^{*2}
	C46-H46C9	1-x,-y,1-z	2.730	-0.170	C-Hπ ^{*2}
	C26-H26C10	1-x,-y,1-z	2.634	-0.233	C-Hπ ^{*2}
	C46-H46C10	1-x,1-y,1-z	2.772	-0.128	C-Hπ ^{*2}
	C1C35	x,y,z	2.830	-0.070	ππ ^{*1}
	C35-H35C1	x,y,z	2.836	-0.064	C-Hπ ^{*1}
	C11-H11C35	1-x,-y,1-z	2.836	-0.064	C-Hπ ^{*2}

*1 offset pi/pi stacking

*2 aromatic CH/pi hydrogen bonds; edge-to-face; T-shape aromatic interaction

Table SM6:	Short	contacts	list of	compound	β-3
------------	-------	----------	---------	----------	-----

	Short Contacts	Symmetry operation (*)	Length (Å)	Length-∑VdW (Å)	
anion-anion	C6-H6N2-C14	x,y,z	2.709	-0.041	C-HN≡C
cation- cation	C24C43	x,y,z	3.330	-0.070	ππ
anion-cation	S1H35	x,y,z	2.949	-0.051	
	S1H49	1-x,-y,1-z	2.970	-0.030	
	S2H30	x,-1+y,z	2.904	-0.096	
	S2H50	1-x,1-y,-z	2.782	-0.218	
	S3H31	1-x,-y,1-z	2.987	-0.013	
	S3H24	1-x,1-y,1-z	2.675	-0.325	
	C48-H48N1-C7	2-x,1-y,-z	2.713	-0.037	C-HN≡C
	C25-H25N2-C14	x,y,z	2.556	-0.194	C-HN≡C
	C59-H59N2-C14	x,y,z	2.599	-0.151	C-HN≡C
	C35-H35C1	x,y,z	2.826	-0.074	С-Нπ
	C32-H32C9	1-x,-y,1-z	2.689	-0.211	С-Нπ
	C32-H32C11	1-x,-y,1-z	2.644	-0.256	С-Нπ
	C44-H44C9	1-x,1-y,1-z	2.742	-0.158	С-Нπ
	C44-H44C11	1-x,1-y,1-z	2.772	-0.128	С-Нπ
	C1C35	x,y,z	3.270	-0.130	ππ

Table SM7: Short contacts list of compound 1.CH₃CN

	Short Contacts	Symmetry operation (*)	Length (Å)	Length-∑VdW (Å)	
anion-solvent	C64-H64N1-C7	2-x,1-y,-z	2.676	-0.074	C-HN≡C
cation- cation	C30C30	1-x,-y,1-z	3.301	-0.099	ππ
	C36-H36C48	-1+x,y,z	2.832	-0.068	С-Нπ
anion-cation	Ni1H19-C19	x,y,z	2.759	-0.071	
	S2H54	1-x,1-y,-z	2.956	-0.044	
	S3H29	x,y,z	2.959	-0.041	
	S3H35	1+x,y,z	2.825	-0.175	
	S4H32	1-x,-y,1-z	2.825	-0.175	
	S4H44	2-x,1-y,1-z	2.728	-0.272	
	S4H50	2-x,1-y,1-z	2.699	-0.301	
	C16-H16N2-C14	x,y,z	2.644	-0.106	C-HN≡C
	C31-H31C8	1-x,-y,1-z	2.821	-0.079	С-Нπ
	C31-H31C9	1-x,-y,1-z	2.695	-0.205	С-Нπ

Table SM8: Short contact list of compound 2-α

	Short Contacts	Symmetry operation (*)	Length (Å)	Length- ∑VdW (Å)	
anion-anion	S2C7	1/2-x,-1/2+y,1/2-z	3.582	0.082	
	C3C4		3.510	0.110	
cation- cation	C15-H15C12	x,1-y,-1/2+z	2.934	0.034	C-Hπ ^{*2}
	C15-H15C13	x,1-y,-1/2+z	2.981	0.081	C-Hπ ^{*2}
anion-cation	S2H17	x,y,z	2.949	-0.051	
	S2H18	1/2-x,-1/2+y,1/2-z	2.962	-0.038	
	C12-H12N1-C7	-1/2+x,1.5-y,1/2+z	2.776	0.026	C-HN≡C

*2 aromatic CH/pi hydrogen bonds; edge-to-face; T-shape aromatic interaction

Figure SM11. Structural detail of the C^{\dots}C and C^{\dots}S interactions in the **2**- α anionic layer.

Table SM9: Short contacts list of compound 4- α

	Short Contacts	Symmetry operation (*)	Length(Å)	Length- ∑VdW (Å)	
anion-anion	S2C7	½-x,-1/2+y,1/2-z	3.562	0.062	
	C3C4	½-x,1.5-y,-z	3.496	0.096	
cation- cation	C13-H13C15	-x,y,1.5-z	2.973	0.073	C-Hπ ^{*2}
	C13-H13C16	-x,y,1.5-z	0.918	0.018	C-Hπ ^{*2}
anion-cation	S2H11	x,1-y,-1/2+z	2.955	-0.045	
	S2H10	½-x,1.5-y,1-z	2.961	-0.039	
	S2C10	x,y,z	3.546	0.046	
	C16-H16N1-C7	-1/2+x,1/2+y,z	2.792	0.042	C-HN≡C

Table SM10: Short contacts list of compound 4- β

	Short	Symmetry	Length(Å)	Length-	
	Contacts	operation (*)		∑VdW(Å)	
anion-anion	C4-C13	1-x,-1/2+y,1-z	3.349	-0.051	ππ
	C4-C14	1-x,-1/2+y,1-z	3.349	-0.051	ππ
	C6-C11	2-x,-1/2+y,1-z	3.302	-0.098	ππ
	C7-C11	2-x,-1/2+y,1-z	3.374	-0.026	ππ
anion-cation	S2H28	x,y,z	2.933	-0.067	
	S3H30	1+x,y,1+z	2.995	-0.005	
	C25-H25C7	x,y,1+z	2.860	-0.040	С-Нπ
	C5-H5C37	1+x,y,1+z	2.857	-0.043	С-Нπ

Figure SM12. Structural detail of the C^{...}C interactions in the β -4 anionic layer.