MoC@NC as a cocatalyst modified ZnIn₂S₄ with strong 2D/2D hetero-interface interaction for efficient H₂ evolution

Lu Chen^a*, Deling Wang^a, Renkun Huang^a*, Ruowen, Liang^a, Linzhu Zhang^a, Shaoming Ying^a*, Guiyang Yan^a

^aDepartment of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China

Table S1 The light intensity of the Xenon lamp at different wavelengths.

Wavelength(nm)	420	450	500	550	600
Light intensity(mW·cm ⁻²)	12.3804	12.0411	20.0861	23.6001	21.6074

Figure S1 TEM and HRTEM imagies of MoC@NC.

Figure S2 The ZIS and MoC@NC (7 *wt* %)/ZIS samples: (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution

Figure S3 XPS spectra of ZIS, MoC@NC and 7 wt% MoC@NC/ZIS: (a) survey spectra; (b) C1s;

(c) N 1s.

Figure S4 XRD patterns of 7 wt% MoC@NC/ZIS after six cycles of photocatalysis.

Figure S5 PL spectra of ZIS and 7 wt %MoC@NC/ZIS.

Figure S6 CPDs of ZIS and MoC@NC surface related to Au reference at single-point measurement over 800 points.