Electronic Supplementary Information

Development of New Multicomponent Crystals of the Antifungal Drug Tioconazole and the Assessment of their Biopharmaceutical Attributes

Avinash Madhesiya,^a Sibananda G. Dash,^{a,c} Princi Gupta,^a Abdul Akhir,^b Deepanshi Saxena,^b Rahul Maitra,^b Sidharth Chopra^b and Tejender S. Thakur^{a,c,*}

^aBiochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 INDIA

^bMolecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226 031 INDIA

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, INDIA

E-mail: tejender.thakur@cdri.res.in

Table of Contents

Sr. No.	Description	Page No.
1	Cambridge structural database (CSD) analysis	S2
2	Primary site-pair interaction energy differences obtained for potential coformers	S3
3	Secondary site-pair interaction energy differences for potential coformers	S4
4	Optimized geometry of homomeric and heteromeric molecular pairs	S5-S12
5	Bulk phase assessment of solid forms	S13
6	Thermal analysis of solid forms	S14-S15
7	Aqueous solubility determinations and solution phase stability studies	S16-S18

Cambridge structural database (CSD version 5.44, April 2023) analysis of known multicomponent crystalline forms of azole antifungals in CSD.

Search Criteria:

Scheme S1 'Azole scaffold' used in CSD search

- Structures with a given scaffold 'and' number of residues ≥ 1
- 3D coordinates determined
- Only organic

Table S1 Summary of Cambridge structural database search results.

Azole drug/derivative	Coformer	Refcode	Reference/DOI
Econazole	HBr	GAPSOF	10.3891/acta.chem.scand.41a-0496
Econazole	Fumaric acid	TEJRIN	10.1016/j.molstruc.2022.133183
Econazole	Maleic acid	TEJROT	10.1016/j.molstruc.2022.133183
Miconazole	HNO ₃	ETEWUV	10.1107/S1600536804003058
Miconazole	H ₂ O	MICONZ,	10.1002/bscb.19790880501 10.1039/D1CP00956G
		MICONZ01	10.1107/S2053229622004909
		MICONZ02	10.1021/acs.cgd.2c00112
		PAVQAI	-
Miconazole	C ₂ H ₅ OH	PAVPOV	10.1021/acs.cgd.2c00112
		PAVPOV01	10.1107/S2053229622004909
Miconazole	CH ₃ OH	PAVPUB	10.1021/acs.cgd.2c00112
Miconazole	H_2O_2	UDUROD	10.1039/C8CC04530E
Miconazole	CH ₃ SO ₄	WUFJEP	10.1021/acs.molpharmaceut.7b00694
Miconazole	Succinic acid	EVATAZ	10.1039/D1CP00956G
Miconazole	Fumaric acid	EVATED	10.1039/D1CP00956G
Miconazole	Fumaric acid	EVATIH	10.1039/D1CP00956G
Miconazole	Adipic acid	EVATON	10.1039/D1CP00956G
Miconazole derivative	HC1	TONTEY	10.1016/j.ejmech.2019.06.083
Ketoconazole metabolite	HC1	CUTDIH	10.1016/j.molstruc.2020.128737
Ketoconazole epimer	СНЗОН	MEBJOT	10.1107/S1600536805041048
Ketoconazole	Oxalic acid	YINVUO	10.1021/cg400638g
Ketoconazole	Fumaric acid	YINWAV	10.1021/cg400638g
Ketoconazole	Succinic acid	YINWEZ	10.1021/cg400638g
Ketoconazole	Hexanedioic acid	YINWID	10.1021/cg400638g
Ketoconazole	2,4-dihydroxy benzoic acid	RADXED	10.1021/acs.cgd.0c01014
Ketoconazole	2,5-dihydroxy benzoic acid	RADXIH	10.1021/acs.cgd.0c01014
Ketoconazole	3,4-dihydroxy benzoic acid	RADXON	10.1021/acs.cgd.0c01014
Ketoconazole	3,4,5-trihydroxy benzoic acid	RAXXUT	10.1021/acs.cgd.0c01014
Ketoconazole	3-(4-hydroxyphenyl)prop-2-enoic acid	RADYAA	10.1021/acs.cgd.0c01014
Ketoconazole	4-aminobenzoic acid	IRIBET,	10.1021/acs.molpharmaceut.9b01178
		IRIBET01	
Tioconazole	Malonic acid	SAPBAQ	10.1021/acs.cgd.1c01139
Tioconazole	Fumaric acid	SAPBEU	10.1021/acs.cgd.1c01139
Tioconazole	DL-tartaric acid	SAPBIY	10.1021/acs.cgd.1c01139
Sulconazole	HNO ₃	LINQII	Bull. Korean Chem. Soc. 1997, 18, 14

Table S2 Site pair interaction energy differences ($\Delta E^{1}_{SitePair}$ in kJ/mol) obtained for tioconazole complexes with various coformers.

Sr No.	Sr No. Coformer	
1	2-Chloro-4-nitrobenzoic acid	-14.30
2	Salicylic acid	-13.30
3	2,5-Dihydroxybenzoic acid	-9.94
4	2,4-Dihydroxybenzoic acid	-9.89
5	Mandelic acid	-9.00
6	Isonicotinic acid	-8.90
7	Benzoic acid	-8.10
8	Nicotinic acid	-7.29
9	4-Hydroxybenzoic acid	-7.20
10	4-Aminosalicylic acid	-6.55
11	Hydroquinone	-5.64
12	Gallic acid	-5.20
13	Fumaric acid	-5.10
14	Terephthalic acid	-4.90
15	Succinic acid	-4.00
16	Malonic acid	-3.84
17	Oxalic acid	-3.80
18	Salicylamide	-2.30
19	Caffeine	-2.20
20	5-Fluorouracil	-2.20
21	2-aminopyridine	-1.90
22	Maleic acid	-1.70
23	Malic acid	-1.40
24	Acetamide	-1.35
25	Adipic acid	-1.00
26	Picolinamide	-1.00
27	2-Aminopyrimidine	-0.50
28	Ascorbic acid	-0.12
29	Urea	-0.10
30	Pyrazinamide	0.60
31	4-Aminobenzamide	1.20
32	Nicotinamide	1.30
33	3,4-Dihydroxybenzoic acid	1.41
34	Isonicotinamide	1.50
35	Glutaric acid	1.80
36	Citric acid	2.00
37	Tartaric acid	4.20
38	Benzamide	4.90
39	trans-Aconitic acid	6.25
40	Mucic acid	10.80

[#] Multicomponent crystals observed in the experimental screening are boldfaced.

Sr No.	Coformer [#]	E ² sitepair	E ² sitepair	ΔE ² sitepair
		(Homo pair)	(Hetero pair)	(Hetero-Homo)
1	2-Chloro-4-nitrobenzoic acid	-13.00	-17.50	-4.50
2	Salicylic acid	-12.47	-19.80	-7.33
3	2,5-Dihydroxybenzoic acid	-30.97	-30.90	0.07
4	2,4-Dihydroxybenzoic acid	-27.80	-28.40	-0.60
5	Mandelic acid	-44.28	-39.80	4.48
6	Isonicotinic acid	-40.50	-18.40	22.10
7	Benzoic acid	-7.53	-21.20	-13.67
8	Nicotinic acid	-39.02	-18.50	20.52
9	4-hydroxybenzoic acid	-28.20	-35.30	-7.10
10	4-aminosalicylic acid	-25.40	-26.90	-1.50
11	Hydroquinone	-42.90	-36.30	6.60
12	Gallic acid	-35.82	-49.60	-13.78
13	Fumaric acid	-37.61	-33.80	3.81
14	Terephthalic acid	-35.85	-33.80	2.05
15	Succinic acid	-34.98	-34.80	0.18
16	Malonic acid	-39.15	-35.40	3.75
17	Oxalic acid	-43.92	-50.80	-6.88
18	Salicylamide	-28.81	-26.90	1.91
19	Caffeine	-25.97	-25.40	0.57
20	5-Fluorouracil	-57.80	-43.70	14.10
21	2-aminopyridine	-18.30	-21.90	-3.60
22	Maleic acid	-77.04	-43.10	33.94
23	Malic acid	-35.62	-37.70	-2.08
24	Acetamide	-38.60	-31.00	7.60
25	Adipic acid	-38.20	-37.70	0.50
26	Picolinamide	-58.84	-14.50	44.34
27	2-Aminopyrimidine	-23.04	-20.80	2.24
28	L-Ascorbic acid	-57.10	-48.00	9.10
29	Urea	-70.60	-32.80	37.80
30	Pyrazinamide	-19.94	-23.10	-3.16
31	4-Aminobenzamide	-38.33	-34.20	4.13
32	Nicotinamide	-33.53	-31.20	2.33
33	3.4-Dihydroxybenzoic acid	-38.60	-33.80	4.80
34	Isonicotinamide	-37.99	-33.10	4.89
35	Glutaric acid	-42.04	-42.10	-0.06
36	Citric acid	-43.94	-58.10	-14.16
37	Tartaric acid	-60.96	-75.40	-14.44
38	Benzamide	-31.95	-27.00	4.95
39	trans-Acotinic acid	-36.46	-47.60	-11.14
40	Mucic acid	-60.97	-50.10	10.87
41	Tioconazole	-13.21	-13.21	0.00

Table S3 The secondary site pair interaction energy differences ($\Delta E^2_{SitePair}$ in kJ mol⁻¹) for potential coformers.

Mandelic Acid

Scheme S2 Optimized geometries of homomeric and heteromeric molecular pairs used in the secondary site-pair interaction energy computation.

Bulk phase purity assessment of solid forms

Figure S1 Comparison of experimental and simulated PXRD patterns for solid-forms (a) TCZ, (b) TCZ-BROM, (c) TCZ-OXAC, (d) TCZ-LTAC, (e) TCZ-NICA, (f) TCZ-TPTH2 and, (g) TCZ-CNBA.

Thermal Analysis of Solid Forms

Figure S2 DSC thermograms of (a) TCZ, (b) TCZ-OXAC, (c) TCZ-FUMH1, (d) TCZ-FUMH2, (e) TCZ-LTAC, (f) TCZ-NICA, (g) TCZ-PTSA, (h) TCZ-TPTH2 (i) TCZ-CNBA, (j) TCZ-SULF and (k) TCZ-BROM

Aqueous Solubility Determinations of Solid Forms

Phase Stability Assessments of Solid Forms in Aqueous Solutions

Figure S3 Comparison of PXRD patterns TCZ solid forms with that of solid residue obtained after solubility measurement study (a) TCZ, (b) TCZ at pH 6.8 (c) TCZ-OXAC, (d) TCZ-LTAC, (e) TCZ-LTAC at pH6.8, (f) TCZ-TPTH2, (g) TCZ-NICA, (h) TCZ-CNBA, (i) TCZ-FUMH1, (j) TCZ-BROM and (k) TCZ-SULF

ESI

Figure S4 UV calibration plots for solid-form (a) TCZ, (b) TCZ at pH 6.8 (c) TCZ-OXAC, (d) TCZ-LTAC, (e) TCZ-LTAC at pH 6.8, (f) TCZ-TPTH2, (g) TCZ-CNBA, (h) TCZ-BROM, (i) TCZ-SULF and (j) TCZ-FUMH1

 Table S4 Molecular extinction coefficients determined for the tioconazole solid forms in aqueous solutions by UV method.

Solid-Form	Molar extinction coefficient (ε)	Goodness-of-fit (R ²)
TCZ	$0.003{\pm}0.001$	0.95
TCZ#	$0.003 {\pm} 0.001$	0.98
TCZ-OXAC	0.135 ± 0.006	0.99
TCZ-LTAC	0.070 ± 0.004	0.97
TCZ-LTAC#	$0.105 {\pm} 0.004$	0.99
TCZ-TPTH2	$0.165 {\pm} 0.001$	0.99
TCZ-CNBA	$0.225{\pm}0.007$	0.99
TCZ-BROM	0.152 ± 0.029	0.95
TCZ-SULF	$0.139{\pm}0.013$	0.97
TCZ-FUMH1	$0.255 {\pm} 0.021$	0.98

[#]Determined in phosphate buffer at pH 6.8