Supporting Information

Fine-tuning synthesis of a novel Cu^I/Cu^{II} mixed-valence coordination polymer

Shu-Ling Sie,^{*a,b*} Surabhi Kamal,^{*c*} Zong-Zhan Lu,^{*a*} Ling-Fang Wei,^{*a*} Tzuoo-Tsair Luo,^{*a*} Yen-Hsiang Liu,^{*c**} Chao-Wan Chang,^{*d**} Kai-Ming Chi,^{*b**} and Kuang-Lieh Lu^{*a,c**}

Content

- Fig. S1 Interlayer π - π stacking interactions in 1 and 2. Fig. S2 UV-visible absorption and emission spectra of 4-H-ptz. Fig. S3 NMR spectrum of 4-H-ptz. Fig. S4 Mass spectrum of 4-H-ptz. Fig. S5 IR spectrum of 1. Fig. S6 IR spectrum of **2**. Fig. S7 Structural drawing showing ADPs of 1. Fig. S8 Structural drawing showing ADPs of 2. Table S1 Crystal data and structure refinement for 1. Table S2 Bond lengths [Å] and angles [°] for 1. Scheme S1 Bond valence method. Crystal data and structure refinement for 2. Table S3
- **Table S4**Bond lengths [Å] and angles [°] for 2.

(b)

Fig. S1 Interlayer π - π stacking interactions at centroid-to-centroid distances of 3.487 Å in **1** (a), and 3.624 Å in **2** (b).

Fig. S2 (a) UV–visible absorption spectrum and (b) emission spectrum (excitation wavelength is 300 nm) of 4-H-ptz.

Fig. S3 NMR spectrum of of 4-H-ptz.

Fig. S4 Mass spectrum of 4-H-ptz.

Fig. S5 IR spectrum of 1.

Fig. S6 IR spectrum of 2.

Fig. S7 Structural drawing showing ADPs of **1**. The asymmetric unit of **1** with displacement ellipsoids drawn at 50% probability level. The H atoms are all omitted. (Symmetry code: ': (0.5 - x, -0.5 + y, 0.5 - z); '': (1-x, y, 2.5-z))

Fig. S8 Structural drawing showing ADPs of **2**. The asymmetric unit of **2** with displacement ellipsoids drawn at 50% probability level. The H atoms are all omitted. (Symmetry code: ': (-0.5 + x, -0.5 + y, z); '': (x, -1 + y, z); '': (x, -1 - y, -0.5 + z))

Identification code	106032	
Empirical formula	$C_{12} U_{10} C_{10} C_{10} C_{10} N_{10} C_{10}$	22
	C12 H10 CI Cu3 N10 C	J 2
Formula weight	552.37	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	a = 12.0666(4) Å	$\alpha = 90^{\circ}$
	b = 6.6817(2) Å	$\beta = 107.439(2)^{\circ}$
	c = 20.6749(7) Å	$\gamma = 90^{\circ}$
Volume	1590.30(9) Å ³	
Ζ	4	
Density (calculated)	2.307 Mg/m ³	
Absorption coefficient	4.181 mm ⁻¹	
<i>F</i> (000)	1088	
Crystal size	0.24 x 0.15 x 0.12 mm ³	
Theta range for data collection	2.065 to 25.034°	
Index ranges	-14<=h<=13, -7<=k<=7, -21<=l<=24	
Reflections collected	6143	
Independent reflections	1395 [$R(int) = 0.0812$]	
Completeness to theta = 25.03°	99.5%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.6878 and 0.5133	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	1395 / 1 / 132	
Goodness-of-fit on F^2	1.136	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0428, w $R2 = 0.1129$	
R indices (all data)	R1 = 0.0480, wR2 = 0.1286	
Largest diff. peak and hole	0.884 and -1.369 e.Å ⁻³	

Table S1 Crystal data and structure refinement for $[Cu_3Cl(4-pt)_2(OH)_2]_n$ (1).

Cu(1)-N(1)#1	1.937(5)	
Cu(1)-N(1)	1.937(5)	
Cu(1)-Cl(1)	2.643(2)	
Cu(2)-O(1)	1.895(4)	
Cu(2)-O(1)#2	1.902(4)	
Cu(2)-N(4)#2	1.995(5)	
Cu(2)-N(3)	1.997(5)	
C(1)-N(1)	1.353(10)	
C(1)-C(2)	1.387(9)	
C(1)-H(1)	0.9500	
C(2)-C(3)	1.395(10)	
C(2)-H(2)	0.9500	
C(3)-C(4)	1.386(9)	
C(3)-C(6)	1.460(8)	
C(4)-C(5)	1.396(9)	
C(4)-H(4)	0.9500	
C(5)-N(1)	1.343(9)	
C(5)-H(5)	0.9500	
C(6)-N(2)	1.340(8)	
C(6)-N(5)	1.357(8)	
N(2)-N(3)	1.321(7)	
N(3)-N(4)	1.323(8)	
N(4)-N(5)	1.341(7)	
O(1)-H(1O)	0.84(2)	
N(1)#1-Cu(1)-N(1)	162.4(4)	
N(1)#1-Cu(1)-Cl(1)	98.82(18)	
N(1)-Cu(1)-Cl(1)	98.82(18)	
O(1)-Cu(2)-O(1)#2	165.67(5)	
O(1)-Cu(2)-N(4)#2	93.99(19)	
O(1)#2-Cu(2)-N(4)#2	86.80(19)	
O(1)-Cu(2)-N(3)	85.9(2)	
O(1)#2-Cu(2)-N(3)	91.7(2)	
N(4)#2-Cu(2)-N(3)	173.1(3)	
N(1)-C(1)-C(2)	121.7(7)	
N(1)-C(1)-H(1)	119.1	

Table S2 Bond lengths [Å] and angles $[^{\circ}]$ for $[Cu_3Cl(4-pt)_2(OH)_2]_n$ (1).

C(2)-C(1)-H(1)	119.1
C(1)-C(2)-C(3)	120.2(7)
C(1)-C(2)-H(2)	119.9
C(3)-C(2)-H(2)	119.9
C(4)-C(3)-C(2)	117.8(6)
C(4)-C(3)-C(6)	123.1(6)
C(2)-C(3)-C(6)	119.1(6)
C(3)-C(4)-C(5)	119.3(6)
C(3)-C(4)-H(4)	120.3
C(5)-C(4)-H(4)	120.3
N(1)-C(5)-C(4)	122.6(6)
N(1)-C(5)-H(5)	118.7
C(4)-C(5)-H(5)	118.7
N(2)-C(6)-N(5)	112.4(5)
N(2)-C(6)-C(3)	122.4(6)
N(5)-C(6)-C(3)	125.2(6)
C(5)-N(1)-C(1)	118.4(5)
C(5)-N(1)-Cu(1)	123.6(4)
C(1)-N(1)-Cu(1)	118.1(5)
N(3)-N(2)-C(6)	104.2(5)
N(2)-N(3)-N(4)	110.4(5)
N(2)-N(3)-Cu(2)	127.3(5)
N(4)-N(3)-Cu(2)	122.1(4)
N(3)-N(4)-N(5)	110.0(5)
N(3)-N(4)-Cu(2)#3	119.7(4)
N(5)-N(4)-Cu(2)#3	130.4(4)
N(4)-N(5)-C(6)	103.0(5)
Cu(2)-O(1)-Cu(2)#3	125.4(2)
Cu(2)-O(1)-H(1O)	117(6)
Cu(2)#3-O(1)-H(1O)	117(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y, -z+5/2 #2 -x+1/2, y-1/2, -z+3/2 #3 -x+1/2, y+1/2, -z+3/2

Scheme S1 Bond valence method.* Mixed-valence characteristics of compound 1.

Bond-Vale	nce-Sum	analy	ysis
------------------	---------	-------	------

Cu(1)			
274,0843	Ri	f1	f2
N(1)	1.94	4 0.43264	5 0.60000
N(1a)	1.94	4 0.43264	5 0.60000
Cl(1)	2.67	5 0.10990	08 0.16132
		0.975	2 1.36134
Cu(2)			
	Ri	f1	f2
N(4b)	2.023	0.345708	0.479441
N(3c)	1.991	0.376938	0.522752
O(1)	1.886	0.35614	0.535623
O(1d)	1.909	0.334675	0.503341
Cl(1)	2.791	0.080329	0.11791
		1.49379	2.15907

	Ro(1+)	Bo	Ro(2+)	Bo
Cu-N	1.63	0.37	1.751	0.37
Cu-O	1.504	0.37	1.655	0.37
Cu-Cl	1.858	0.37	2	0.37

Ri: Metal coordination bond distance of crystal structure (Angstrom) Ro: emperical bonding distance (Angstrom) Bo: emperical parameter(Angstrom) fl=exp[(Ro(1+)-Ri)/Bo]

f2=exp[(Ro(2+)-Ri)/Bo]

Based on the Bond-Valence-Sum analysis, Cu(1) is 0.9752 and Cu(2) is 2.1591. Accordingly, Cu(1) presents a +1 charge but Cu(2) presents a +2 charge.

Fig. A view of the metal coordination environment of **1**. (Symmetry code: a: (1-x, y, 0.5-z); b (0.5+x, 0.5-y, 0.5+z); c (1-x, 1-y, -z); d (1.5-x, -0.5+y, 0.5-z)).

*The oxidation states of Cu cations were calculated by "bond valence method" reported by Thorp, H. H., *Inorg. Chem.* **1992**, *31*, 1585–1588. https://pubs.acs.org/doi/pdf/10.1021/ic00035a012

Identification code	a11935	
Empirical formula	C6 H4 Cl Cu2 N5	
Formula weight	308.67	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	Cc	
Unit cell dimensions	a = 19.689(5) Å	$\alpha = 90^{\circ}$
	b = 3.6236(9) Å	$\beta = 102.953(3)^{\circ}$
	c = 11.631(3) Å	$\gamma=90^\circ$
Volume	808.7(3) Å ³	
Ζ	4	
Density (calculated)	2.535 Mg/m ³	
Absorption coefficient	5.543 mm ⁻¹	
<i>F</i> (000)	600	
Crystal size	0.22 x 0.10 x 0.04 mm ²	3
Theta range for data collection	2.123 to 25.069°	
Index ranges	-22<=h<=21, -4<=k<=	1, -12<=l<=13
Reflections collected	1437	
Independent reflections	1200 [R(int) = 0.0173]	
Completeness to theta = 25.07°	97.8%	
Absorption correction	None	
Max. and min. transmission	0.8087 and 0.3752	
Refinement method	Full-matrix least-square	es on F^2
Data / restraints / parameters	1200 / 2 / 128	
Goodness-of-fit on F^2	1.069	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0240, wR2 = 0.0	0655
R indices (all data)	R1 = 0.0305, wR2 = 0.2	1018
Absolute structure parameter	0.38(4)	
Largest diff. peak and hole	0.645 and -0.894 e.Å ⁻³	

Table S3 Crystal data and structure refinement for $[Cu_2Cl(4-pt)]_n$ (2).

Cu(1)-N(1)	1.920(10)
Cu(1)-N(5)#1	1.938(8)
Cu(1)-Cl(1)	2.484(3)
Cu(2)-N(4)#2	1.962(9)
Cu(2)-N(2)#3	2.033(9)
Cu(2)-Cl(1)	2.439(2)
Cu(2)-Cl(1)#3	2.490(2)
C(1)-N(2)	1.347(13)
C(1)-N(3)	1.350(13)
C(1)-C(2)	1.467(13)
C(2)-C(3)	1.384(14)
C(2)-C(6)	1.392(14)
C(3)-C(4)	1.366(15)
C(3)-H(3)	0.9500
C(4)-N(5)	1.350(15)
C(4)-H(4)	0.9500
C(5)-N(5)	1.345(13)
C(5)-C(6)	1.375(15)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
N(1)-N(4)	1.328(14)
N(1)-N(2)	1.341(14)
N(3)-N(4)	1.334(12)
N(1)-Cu(1)-N(5)#1	152.7(4)
N(1)-Cu(1)-Cl(1)	100.7(3)
N(5)#1-Cu(1)-Cl(1)	106.4(3)
N(4)#2-Cu(2)-N(2)#3	133.9(3)
N(4)#2-Cu(2)-Cl(1)	116.0(3)
N(2)#3-Cu(2)-Cl(1)	97.5(2)
N(4)#2-Cu(2)-Cl(1)#3	106.9(3)
N(2)#3-Cu(2)-Cl(1)#3	100.5(2)
Cl(1)-Cu(2)-Cl(1)#3	94.63(9)
Cu(2)-Cl(1)-Cu(1)	123.05(11)
Cu(2)-Cl(1)-Cu(2)#4	94.63(9)
Cu(1)-Cl(1)-Cu(2)#4	78.78(8)

Table S4	Bond lengths [Å] and angles [°] for $[Cu_2Cl(4-pt)]_n$ (2).
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$

N(2)-C(1)-N(3)	111.2(9)
N(2)-C(1)-C(2)	128.5(9)
N(3)-C(1)-C(2)	120.2(8)
C(3)-C(2)-C(6)	118.0(9)
C(3)-C(2)-C(1)	118.4(8)
C(6)-C(2)-C(1)	123.5(9)
C(4)-C(3)-C(2)	120.4(9)
C(4)-C(3)-H(3)	119.8
C(2)-C(3)-H(3)	119.8
N(5)-C(4)-C(3)	122.1(9)
N(5)-C(4)-H(4)	118.9
C(3)-C(4)-H(4)	118.9
N(5)-C(5)-C(6)	123.6(9)
N(5)-C(5)-H(5)	118.2
C(6)-C(5)-H(5)	118.2
C(5)-C(6)-C(2)	118.4(9)
C(5)-C(6)-H(6)	120.8
C(2)-C(6)-H(6)	120.8
N(4)-N(1)-N(2)	108.9(8)
N(4)-N(1)-Cu(1)	128.2(8)
N(2)-N(1)-Cu(1)	122.6(8)
N(1)-N(2)-C(1)	105.1(9)
N(1)-N(2)-Cu(2)#4	112.2(6)
C(1)-N(2)-Cu(2)#4	141.7(7)
N(4)-N(3)-C(1)	104.6(8)
N(1)-N(4)-N(3)	110.2(9)
N(1)-N(4)-Cu(2)#5	130.1(7)
N(3)-N(4)-Cu(2)#5	119.6(6)
C(5)-N(5)-C(4)	117.4(9)
C(5)-N(5)-Cu(1)#6	123.0(7)
C(4)-N(5)-Cu(1)#6	119.4(7)

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2, y-1/2, z #2 x, -y-1, z-1/2 #3 x, y-1, z #4 x, y+1, z #5 x, -y-1, z+1/2 #6 x+1/2, y+1/2, z