Supplementary Information

Thermal Fluctuation-induced Selective CO₂ Uptake of Seemingly Nonporous *N*,*C*-protected Dipeptide Crystals as Elucidated by *in situ* X-ray Crystallographic Analysis

Kazuaki Yamanaka,^a Ryusei Oketani,^{a,b} Yuya Mori,^a Takashi Sato,^c Seiji Tsuzuki,^d Hiroki Takahashi ^a and Hirohito Tsue^{*a}

^{*a*} Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

^b Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

^c SBU ROD, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

^{*d*} Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Table of Contents

1. Molecular crystals with seemingly nonporous crystal architecture	Page 2
2. General methods	Page 2
3. Synthesis of <i>N</i> , <i>C</i> -protected dipeptides	Page 3
4. NMR spectra	Page 5
5. Crystallography	Page 8
6. Gas sorption isotherms of 1	Page 11
7. SEM images of the crystals of 1 before and after CO ₂ sorption experiment	Page 13
8. Theoretical calculations	Page 14
9. References	Page 15

1. Molecular crystals with seemingly nonporous crystal architecture

calixarene: $X = CH_2$, R = H, n = 4 or 5 (ref. 6) thiacalixarene: X = S or SO₂, R = Me or H, n = 4 (ref. 11) azacalixarene: X = NH, R = Me, n = 4 or 5 (ref. 14)

p-tert-butylcalix[4]dihydroquinone (ref. 6d)

4-phenoxyphenol (ref. 10)

1,3,5-triphenylbenzene (ref. 12)

cavitand (ref. 13)

Chart S1 Chemical structures of organic compounds depositing seemingly nonporous crystals. Reference numbers are identical to those listed in the main text.

2. General methods

All reagents and solvents were purchased from commercial suppliers and used without further purification. NMR spectra were recorded on a JEOL ECX-400 NMR spectrometer. Chemical shifts were reported in δ ppm relative to tetramethylsilane (¹H NMR) or chloroform-d (¹³C NMR), and signal multiplicities in ¹H NMR spectra are described as singlet (s), broad singlet (br), doublet (d), triplet (t), double doublet (dd) and multiplet (m). IR spectra were recorded on a Shimadzu IRSpirit-T spectrometer by using KBr tablets. Melting points were determined on a Shimadzu DSC-60. High-resolution mass spectrometry (HRMS) measurements were performed by using a Bruker micrOTOF II with ESI ionization method. Scanning electron microscope (SEM) studies were conducted on a Keyence VE-8800 instrument. Gas sorption isotherms were measured using a Shimadzu Gemini VII 2390 surface area analyzer.

3. Synthesis of N,C-protected dipeptides

Scheme S1 Synthesis of methyl N-(tert-butoxycarbonyl)-L-methionyl-L-alaninate (1)

To a solution of *N*-(*tert*-butoxycarbonyl)-L-methionine (**4**, 1.00 g, 4.02 mmol) in dry THF (15 mL) at -15 °C, triethylamine (2.5 mL, 18 mmol) and ClCO₂Et (0.70 mL, 7.4 mmol) were added under Ar atmosphere. After stirring for 10 min, a solution of **5** (0.840 g, 6.02 mmol) in dry DMF (15 mL) was added to the reaction mixture. After 15 min, the solvent was evaporated, and the residue was dissolved in ethyl acetate. The organic layer was washed with water and brine, and dried over MgSO₄. The solvent was evaporated under vacuum to give a colorless oil. It was dissolved in boiling hexane, and the solution was allowed to cool to room temperature. Colorless needle crystals of **1** (1.19 g, 88.4%) were obtained by filtration. mp 87.0 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.70 (br, 1H, NH), 5.20 (br, 1H, NH), 4.58 (quintet, *J* = 7.3 Hz, 1H, NHCHCH₃), 4.30 (br, 1H, NHCHCO), 3.75 (s, 3H, OMe), 2.60 (t, *J* = 7.2 Hz, 2H, CH₂S), 2.12 (s, 3H, SMe), 2.10–2.03 (m, 1H, CH₂CH₂S), 1.99–1.90 (m, 1H, CH₂CH₂S), 1.48 (s, 9H, *t*-Bu), 1.42 (d, *J* = 7.2 Hz, 3H, CHCH₃); ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 171.1, 155.5, 80.1, 53.1, 52.4, 48.0, 31.6, 29.9, 28.2, 18.1, 15.1; IR (KBr) ν_{max} : 3288, 3074, 2981, 1755, 1679, 1652, 1535, 1459, 1393, 1367, 1300, 1270, 1256, 1201, 1160, 1050 cm⁻¹; HRMS (ESI): Calcd for C₁₄H₂₆N₂O₅SNa [M+Na]⁺ 357.1455; found 357.1474.

Scheme S2 Synthesis of methyl *N*-(*tert*-butoxycarbonyl)-L-methionyl-L-valinate (2) and methyl *N*-(*tert*-butoxycarbonyl)-L-methionyl-L-leucinate (3)

To a mixture of 4 (2.36 g, 9.48 mmol) and *N*-methylmorpholine (1.1 mL, 10 mmol) in dry THF (40 mL) at -15 °C, isobutyl chloroformate (1.3 mL, 9.9 mmol) was added and then stirred for 1 h under Ar atmosphere. Aside from it, 6 (1.71 g, 10.2 mmol) was neutralized with triethylamine (3.0 mL, 22 mmol) in methanol (6 mL). After evaporation under reduced pressure, the resultant residue was suspended in dry THF (15 mL). The suspension was added to the reaction mixture, which was allowed to warm to room temperature. After stirring for 4 h, the solvent was evaporated, and the residue was dissolved in

ethyl acetate. The organic layer was washed with saturated NaHCO₃ solution and brine, and dried over MgSO₄. The solvent was removed by evaporation to give a white solid. It was dissolved in boiling hexane, and the solution was allowed to cool to room temperature. Colorless needle crystals of **2** (2.73 g, 79.5%) were obtained by filtration. mp 125.2 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.69 (br, 1H, NH), 5.17 (br, 1H, NH), 4.53 (dd, *J* = 8.0 Hz, 4.4 Hz, 1H, NHC*H*(*i*-Pr)CO), 4.31 (br, 1H, NHC*H*CO), 3.74 (s, 3H, OMe), 2.61 (t, *J* = 7.2 Hz, 2H, CH₂S), 2.22–2.16 (m, 1H, C*H*(CH₃)₂), 2.13 (s, 3H, SMe), 2.10–2.03 (m, 1H, C*H*₂CH₂S), 2.01–1.94(m, 1H, C*H*₂CH₂S), 1.45 (s, 9H, *t*-Bu), 0.93 (dd, *J* = 13.6 Hz, 6.8 Hz, 6H, CH(C*H*₃)₂); ¹³C NMR (100 MHz, CDCl₃): δ 172.0, 171.5, 155.5, 80.0, 57.1, 53.1, 52.1, 31.1, 31.0, 30.0, 28.2, 18.9, 17.5, 15.0; IR (KBr) *v*_{max}: 3308, 3055, 2979, 1754, 1682, 1652, 1538, 1447, 1436, 1392, 1365, 1296, 1256, 1174, 1156, 1051 cm⁻¹; HRMS (ESI): Calcd for C₁₆H₃₀N₂O₅SNa [M+Na]⁺ 385.1768; found 385.1769.

Synthesis of **3** was carried out according to the above-mentioned procedure for **2** by using **4** (1.97 g, 7.90 mmol), **7** (1.44 g, 7.92 mmol), *N*-methylmorpholine (1.0 mL, 9.1 mmol), isobutyl chloroformate (1.2 mL, 8.8 mmol), and triethylamine (1.3 mL, 9.3 mmol) to give colorless needle crystals of **3** (2.57 g, 86.5%). mp 108.8 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.52 (br, 1H, NH), 5.15 (br, 1H, NH), 4.61 (m, 1H, NHC*H*(*i*-Bu)CO), 4.28 (br, 1H, NHCCO), 3.75 (s, 3H, OMe), 2.61 (t, *J* = 6.8 Hz), 2.12 (s, 3H, SMe), 2.10–2.03 (m, 1H, CH₂CH₂S), 1.99–1.92 (m, 1H, CH₂CH₂S), 1.70–1.63 (m, 2H, CH₂CH), 1.60–1.54(m, 1H, CH₂CH), 1.45 (s, 9H, *t*-Bu), 0.93 (d, *J* = 6.0 Hz, 6H, CH(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 171.3, 155.4, 79.9, 52.9, 52.2, 50.6, 41.0, 31.4, 29.8, 28.2, 24.6, 22.7, 21.6, 15.0; IR (KBr) ν_{max} : 3338, 3280, 3074, 2972, 1759, 1682, 1659, 1549, 1520, 1445, 1392, 1366, 1296, 1266, 1253, 1157, 1045 cm⁻¹; HRMS (ESI): Calcd for C₁₇H₃₂N₂O₅SNa [M+Na]⁺ 399.1924; found 399.1925.

4. NMR spectra

Fig. S2 ¹³C NMR spectrum of 1 in CDCl₃

Fig. S3 ¹H NMR spectrum of 2 in CDCl₃

Fig. S4 ¹³C NMR spectrum of 2 in CDCl₃

Fig. S6¹³C NMR spectrum of 3 in CDCl₃

5. Crystallography

Single crystals of 1–3 were grown by cooling the boiling solutions in hexane. X-ray diffraction data of 1–3 were collected using a Rigaku Saturn724+ CCD area detector diffractometer [graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å); ω scans]. All the structures were solved by direct methods using SIR97^{S1} and refined on F^2 with all data using SHELXL-2014/7.^{S2} All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were refined isotropically or using the riding model. All calculations were performed using CrysAlis^{Pro S3} and Yadokari-XG 2009.^{S4} Crystallographic data for the structures reported in the paper have been deposited with the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 2298630–2298633, 2342412, and 2342427. Supplementary Movies S1 and S2 for explaining the crystal structures of **1** in the absence and presence of CO₂ were prepared by using UCSF Chimera ver. 1.7.^{S5}

Compound	1	1	1	1.0. 25 CO ₂
Compound	15 °C	−35 °C	−85 °C	−85 °C
Chemical formula	$C_{14}H_{26}N_2O_5S$	$C_{14}H_{26}N_2O_5S$	$C_{14}H_{26}N_2O_5S$	$C_{14.25}H_{26}N_2O_{5.50}S$
Formula mass	334.44	334.44	334.44	345.61
Crystal system	Hexagonal	Hexagonal	Hexagonal	Hexagonal
Space group	<i>P</i> 65	P65	P65	P65
<i>a</i> / Å	11.287(1)	11.2333(9)	11.1876(8)	11.239(4)
<i>b</i> / Å	11.287(1)	11.2333(9)	11.1876(8)	11.239(4)
<i>c</i> / Å	27.130(2)	27.046(2)	26.954(2)	27.039(1)
α / °	90	90	90	90
eta / °	90	90	90	90
γ / °	120	120	120	120
Unit cell volume / $Å^3$	2993.1(5)	2955.6(4)	2921.6(5)	2958(2)
Temperature / K	288(2)	238(2)	188(2)	188(2)
No. of formula units per cell, Z	6	6	6	6
No. of reflections measured	29458	28134	27857	9839
No. of independent reflections	6050	5962	5911	4090
R _{int}	0.0732	0.0677	0.0519	0.0390
Final R_1 values $(I > 2\sigma(I))$	0.0859	0.0815	0.0774	0.0525
Final w $R(F^2)$ values $(I > 2\sigma(I))$	0.1623	0.1848	0.1692	0.1424
Final R_1 values (all data)	0.2396	0.2013	0.1442	0.1010
Final $wR(F^2)$ values (all data)	0.2175	0.2460	0.1984	0.1886
S	1.0392	0.9909	1.0289	0.8476

Table S1 Crystallographic data of *N*,*C*-protected dipeptide crystals

Compound	2	3	
Compound	−85 °C	−85 °C	
Chemical formula	$C_{16}H_{30}N_2O_5S$	C17H32N2O5S	
Formula mass	362.49	376.52	
Crystal system	Hexagonal	Hexagonal	
Space group	<i>P</i> 6 ₅	$P6_{5}$	
<i>a</i> / Å	11.3887(8)	11.4929(7)	
<i>b</i> / Å	11.3887(8)	11.4929(7)	
<i>c</i> / Å	27.3424(2)	27.929(2)	
α / °	90	90	
eta / °	90	90	
γ/°	120	120	
Unit cell volume / Å ³	3071.3(4)	3194.8(3)	
Temperature / K	188(2)	188(2)	
No. of formula units per cell, Z	6	6	
No. of reflections measured	29375	30468	
No. of independent reflections	5754	6393	
R _{int}	0.0886	0.0614	
Final R_1 values $(I > 2\sigma(I))$	0.0754	0.0732	
Final w $R(F^2)$ values $(I > 2\sigma(I))$	0.1414	0.1499	
Final R_1 values (all data)	0.1359	0.1203	
Final w $R(F^2)$ values (all data)	0.1646	0.1700	
S	1.0308	1.0291	

Table S1 continued

Compound —	1	1	1	2	3	
	15 °C	−35 °C	−85 °C	−85 °C	−85 °C	
C1	0.095(2)	0.084(2)	0.080(2)	0.0400(9)	0.0303(6)	
	[1.7(1)]	[1.8(1)]	[2.0(1)]	[1.59(5)]	[1.29(4)]	
C2	0.102(2)	0.089(2)	0.080(1)	0.0360(8)	0.0255(6)	
C2	[1.8(1)]	[1.9(1)]	[2.0(1)]	[1.43(5)]	[1.09(3)]	
C3	0.185(4)	0.162(4)	0.146(3)	0.048(1)	0.0280(6)	
	[3.3(1)]	[3.5(1)]	[3.7(1)]	[1.9(1)]	[1.20(4)]	
C4	0.065(1)	0.056(1)	0.0479(8)	0.0261(6)	0.0224(5)	
	[1.2(1)]	[1.2(1)]	[1.22(3)]	[1.04(3)]	[0.96(3)]	
C5	0.057(1)	0.0463(9)	0.0393(7)	0.0252(6)	0.0234(5)	
0.5	[1.0(1)]	[1.00(3)]	[1.00(3)]	[1.00(3)]	[1.00(3)]	
C6	0.076(1)	0.063(1)	0.0529(9)	0.0323(7)	0.0325(7)	
0	[1.3(1)]	[1.36(4)]	[1.35(3)]	[1.28(4)]	[1.39(4)]	
C7	0.098(2)	0.081(2)	0.066(1)	0.0382(8)	0.0432(8)	
C/	[1.7(1)]	[1.8(1)]	[1.7(1)]	[1.52(5)]	[1.85(5)]	
<u>C8</u>	0.154(3)	0.133(3)	0.117(2)	0.063(1)	0.076(2)	
0	[2.7(1)]	[2.87(9)]	[2.98(7)]	[2.5(1)]	[3.3(1)]	
C9	0.200(5)	0.175(5)	0.163(4)	0.099(2)	0.072(2)	
09	[3.5(1)]	[3.8(1)]	[4.2(1)]	[3.9(1)]	[3.1(1)]	
C10	0.073(1)	0.064(1)	0.058(1)	0.0307(7)	0.0269(6)	
	[1.3(1)]	[1.4(1)]	[1.5(1)]	[1.22(4)]	[1.15(4)]	
C11	0.129(3)	0.112(3)	0.102(2)	0.0406(9)	0.0379(8)	
	[2.3(1)]	[2.42(8)]	[2.60(7)]	[1.61(5)]	[1.62(5)]	
C12	0.179(4)	0.152(4)	0.131(3)	0.068(2)	0.117(3)	
	[3.1(1)]	[3.3(1)]	[3.3(1)]	[2.7(1)]	[5.0(2)]	
C13	0.262(7)	0.247(8)	0.252(7)	0.061(1)	0.067(1)	
	[4.6(2)]	[5.3(2)]	[6.4(2)]	[2.4(1)]	[2.9(1)]	
C14	0.301(9)	0.28(1)	0.241(7)	0.067(1)	0.119(3)	
014	[5.3(2)]	[6.1(3)]	[6.1(2)]	[2.7(1)]	[5.1(2)]	
C15				0.067(1)	0.0288(6)	
015	—	—	—	[2.7(1)]	[1.23(4)]	
C16		516			0.087(2)	0.0433(8)
	—	—	—	[3.5(1)]	[1.85(5)]	
C17	·····				0.0433(8)	
				_	[1.85(5)]	

Table S2 Unnormalized and normalized equivalent isotropic displacement factors $(U_{eq})^{a,b}$ of 1 at 15, -35, and -85 °C and those of 2 and 3 at -85 °C

^{*a*} The U_{eq} values (Å²) of the constituent carbon atoms were normalized by using those of the asymmetric carbon atoms (C5) of each methionine moiety as a reference. ^{*b*} Normalized U_{eq} values are shown in the square brackets.

6. Gas sorption isotherms of 1

Fig. S7 Gas sorption isotherms of **1** for N₂, O₂, Ar, and CO₂ at (a] 20 °C and (b) -78 °C ($P_0 = 760$ mmHg). Isotherms for N₂, O₂, Ar, and CO₂ are shown by blue, black, green, and red closed circles, respectively.

Fig. S8 First and second CO₂ sorption isotherms of **1** in two consecutive CO₂ sorption experiments at - 78 °C ($P_o = 760 \text{ mmHg}$). Single crystals of **1**, obtained from a different recrystallization batch from that applied to Figs. 4 and S7, were used to record the two consecutive CO₂ sorption isotherms.

7. SEM images of the crystals of 1 before and after CO₂ sorption experiment

Fig. S9 SEM images of the crystals of **1** (a,b) before and (c,d) after they were subjected to CO₂ sorption experiment. Magnification: (a,c) 500x, (b,d) 1,000x.

8. Theoretical calculations

As mentioned in the main text, the main chain of **1** with a smaller occupancy is assignable to the CO_2 sorption state of **1**, and its atomic coordinates were extracted from the crystallographic data of **1**·0.25 CO_2 . The atomic coordinates of hydrogen atoms were optimized under periodic boundary conditions using the fixed lattice. The DMol³ module implemented in BIOVIA Materials Studio 2017 software was used for the optimization. The PBE functional, DND basis set, and Grimme's D2 dispersion correction were used for the calculations.

Ab initio calculations were then carried out to evaluate intermolecular interaction energies using the optimized structures. The Gaussian 16 program (Revision C.01)^{S6} was used for the *ab initio* calculations. Electron correlation was corrected by the MP2 method. The aug-cc-pVDZ basis set was used for the calculations of intermolecular interaction energies. The basis set superposition error was corrected by the counterpoise method. Total intermolecular interaction energy (E_{int}) between CO₂ and each adjacent molecule of **1** was calculated at the MP2 level. The Hartree-Fock level interaction energies (E_{HF}) was also calculated.

GDMA ver. 2.2.03 program^{S7} was used to calculate distributed multipole of each molecule on all atoms up to hexadecapole by using the wave functions obtained at the MP2/aug-cc-pVDZ level. Orient ver. 4.8.31 program^{S8} was employed to calculate electrostatic (E_{es}) and induction energies (E_{ind}). The E_{es} was calculated as the interactions between distributed multipoles. The E_{ind} was calculated as the interactions between the polarizable sites and the electric field produced by the distributed multipole. For the calculations of E_{ind} , the following values of polarizability were used; C: 10, H: 3, N: 8, O: 6, and S: 20 a.u. The effect of electron correlation ($E_{corr} = E_{int} - E_{HF}$) is mainly the contributions of the dispersion interactions. The short-range interaction energy (E_{short}), that is comprised of exchange repulsion and charge transfer interaction, was calculated as the difference between the E_{HF} and the sum of E_{es} and E_{ind} , namely $E_{short} = E_{HF} - E_{es} - E_{ind}$.

9. References

- S1 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidorib and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115–119.
- S2 G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3-8.
- S3 CrysAlis PRO, Oxford Diffraction Ltd., Yarnton, England, 2009.
- S4 C. Kabuto, S. Akine, T. Nemoto and E. Kwon, J. Cryst. Soc. Jpn., 2009, 51, 218–224.
- S5 (a) E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin., *J. Comput. Chem.*, 2004, 25, 1605–1612; (b) https://www.cgl.ucsf.edu/chimera.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- S7 A. J. Stone, J. Chem. Theory Comput., 2005, 1, 1128–1132.
- S8 A. J. Stone, A. Dullweber, M. Hodges, P. Popelier and D. J. Wales, Orient: a program for studying interactions between molecules, version 3.2, University of Cambridge, Cambridge, 1997.