Supporting Information

Doped TiO₂-Supported IrO₂ Electrocatalyst with High Activity and Durability toward the Acidic Oxygen Evolution Reaction

Zhen Fang,†a,e Zhongmin Tang,†*b Senming Lin, Runhua Li,†a,e Xiaomei Chen,†a,e Jiakang Tian,†a,e Lijiang Liu,‡a Jiaheng Peng,†a,e Shuai Liu,‡a Benwei Fu,†a Tao Deng,†a,c and Jianbo Wu†a,c,d,e

‡State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
E-mail: jianbowu@sjtu.edu.cn
dengtao@sjtu.edu.cn
pengjiaheng_2016@sjtu.edu.cn

*Emergency Rescue Center of Xinjiang Oilfield Company.
E-mail: yjjytangzm@petrochina.com.cn

Characterization data

Figure S1. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of TiO₂@IrO₂.
Figure S2. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of V-TiO₂@IrO₂.
Figure S3. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Mn-TiO₂@IrO₂.
Figure S4. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Fe-TiO₂@IrO₂.
Figure S5. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Ni-TiO₂@IrO₂.
Figure S6. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Cu-TiO₂@IrO₂.
Figure S7. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Nb-TiO₂@IrO₂.
Figure S8. Electrocatalysis OER stability test of unsupported IrO₂, TiO₂@IrO₂, Fe-TiO₂@IrO₂, and W-TiO₂@IrO₂ (lasting for 3.1 h).

Table S1. Performance table of Ir-based electrocatalysts.
Figure S1. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of TiO$_2$@IrO$_2$.
Figure S2. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of V-TiO$_2$@IrO$_2$.
Figure S3. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Mn-TiO$_2$@IrO$_2$.
Figure S4. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Fe-TiO$_2$@IrO$_2$.
Figure S5. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Ni-TiO$_2$@IrO$_2$.
Figure S6. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Cu-TiO$_2$@IrO$_2$.
Figure 57. TEM images, SAED patterns, HAADF-STEM images and EDS elemental mappings of Nb-TiO$_2$@IrO$_2$.
Figure S8. Electrocatalysis OER stability test of unsupported IrO$_2$, TiO$_2$@IrO$_2$, Fe-TiO$_2$@IrO$_2$, and W-TiO$_2$@IrO$_2$ (test lasting for 3.1h). (a) Chronopotentiometry test at 10mA/cm$^2_{geo}$. (b) OER activity before and after the chronopotentiometry test. (c) The attenuation degree of mass activity (i_m) before and after the chronopotentiometry test at 1.56 V (vs Ag/AgCl). (d) Nyquist plots before and after chronopotentiometry test at the potential of 10 mA/cm$^2_{geo}$. (e) The increased degree of R_{ct} before and after the chronopotentiometry test corresponding to the Nyquist plots.
Table S1. Performance table of Ir-based electrocatalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>Overpotential @10mA/cm² (mV)</th>
<th>Tafel slope (mV/dec)</th>
<th>Mass activity (A/mgIr) @Overpotential (V)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-TiO₂/IrO₂</td>
<td>0.1M HClO₄</td>
<td>308</td>
<td>42.36</td>
<td>0.72@330</td>
<td>This work</td>
</tr>
<tr>
<td>IrO₂</td>
<td>0.1M HClO₄</td>
<td>373</td>
<td>112</td>
<td>0.0126@300</td>
<td>[1]</td>
</tr>
<tr>
<td>IrO₂ ns</td>
<td>0.5M H₂SO₄</td>
<td>350</td>
<td>57</td>
<td>0.437@xx</td>
<td>[2]</td>
</tr>
<tr>
<td>Ni&Co-IrO₂</td>
<td>0.1M HClO₄</td>
<td>~280</td>
<td>53</td>
<td>0.055@270</td>
<td>[3]</td>
</tr>
<tr>
<td>TiO₂/IrO₂</td>
<td>0.1M HClO₄</td>
<td>255@1mA/cm²</td>
<td>42</td>
<td>0.07@295</td>
<td>[4]</td>
</tr>
<tr>
<td>Nb-TiO₂/IrO₂</td>
<td>0.1M HClO₄</td>
<td>310</td>
<td>/</td>
<td>/</td>
<td>[5]</td>
</tr>
<tr>
<td>Nb₀.₀₅TiO₂₀.₉₅O₂/ IrO₂</td>
<td>0.5M H₂SO₄</td>
<td>270@1mA/cm²</td>
<td>282</td>
<td>0.471@370</td>
<td>[6]</td>
</tr>
<tr>
<td>W₄Ti₁₁O₂₂Ir</td>
<td>0.1M HClO₄</td>
<td>~300</td>
<td>/</td>
<td>~0.77@570</td>
<td>[7]</td>
</tr>
<tr>
<td>TiN/IrO₂</td>
<td>0.5M H₂SO₄</td>
<td>313</td>
<td>65.5</td>
<td>0.874@370</td>
<td>[8]</td>
</tr>
<tr>
<td>IrNiCu DNF/C</td>
<td>0.1M HClO₄</td>
<td>307</td>
<td>48</td>
<td>0.053@300</td>
<td>[9]</td>
</tr>
<tr>
<td>IrCoNi PHNCs</td>
<td>0.1M HClO₄</td>
<td>303</td>
<td>53.8</td>
<td>0.7@300</td>
<td>[10]</td>
</tr>
<tr>
<td>P-IrCu₁.₄NCS</td>
<td>0.05M H₂SO₄</td>
<td>311</td>
<td>53.9</td>
<td>0.213@320</td>
<td>[11]</td>
</tr>
<tr>
<td>SrOₓIr₉r₂O₂ₓNₓ</td>
<td>0.1M HClO₄</td>
<td>310</td>
<td>/</td>
<td>/</td>
<td>[12]</td>
</tr>
<tr>
<td>RuIr</td>
<td>0.1M HClO₄</td>
<td>344</td>
<td>111.5</td>
<td>/</td>
<td>[13]</td>
</tr>
<tr>
<td>IrOOH NSs</td>
<td>0.1M HClO₄</td>
<td>344</td>
<td>58</td>
<td>/</td>
<td>[14]</td>
</tr>
<tr>
<td>Sputtered IrO₂ films</td>
<td>0.1M HClO₄</td>
<td>490</td>
<td>100</td>
<td>/</td>
<td>[15]</td>
</tr>
</tbody>
</table>

