Supporting Information

for

Adaptable 2,5-bis((1,2,3-triazol-4-yl)methoxy)pyrazine ligands for the simple self-assembly of homoleptic 1D coordination polymers

Marryllyn E. Donaldon, ${ }^{\text {a }}$ Tyson N. Dais, ${ }^{\text {a }}$ Gareth J. Rowlands, ${ }^{\text {ab }}$ Brodie E. Matheson, ${ }^{\text {a }}$ and Paul G. Plieger* ${ }^{*}$

${ }^{a}$ School of Natural Sciences (SNS), Massey University, Tennent Drive, Palmerston North, 4410, New Zealand

E-mail: p.g.plieger@massey.ac.nz

Table of Contents

S1: Materials and Methods 2
S1.1 Synthesis and characterisation of the azido derivatives. 3
S1.3 Synthesis and characterisation of the TzOP ligands 9
S1.4 SCXRD of organic compounds 12
S2 Characterization of Products 13
S2.1 UV-Vis Specroscopy 13
S2.2 L1 and L2 complexes 14
S2.3 L3complexes 19
S2.4 L3complexes 20
S3 NMR Spectra 23
S4 Infrared Spectra 31
References 40

Experimental section

S1: Materials and Methods

Materials

All reactions were performed under aerobic conditions using chemicals and solvents as purchased from commercial sources, unless stated otherwise. MeOH was dried over activated $3 \AA$ molecular sieves. CAUTION: Organic azides are potentially explosive and should be handled with care.

Instrumentation

- ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker Avance 500 MHz spectrometer. Shifts are reported relative to residual solvent.
- IR spectra were recorded on solid-state samples using a ThermoFischer Nicolet iS5 equipped with an iD7 diamond ATR sampling accessory.
- HRMS was recorded using a ThermoScientific Q Exactive Focus Hybrid Quadrupole-Orbitrap mass spectrometer.
- UV-Vis spectra were recorded using a Shimadzu UV-3101PC spectrophotometer.
- Single-crystal X-ray diffraction experiments were carried out on a Bruker D8 Venture diffractometer equipped with an $\mathrm{I} \mu \mathrm{S}$ Diamond microfocus $\mathrm{Cu}-\mathrm{K} \alpha$ source $(\lambda=1.54178 \AA$) and a Photon III detector. Single crystals were mounted on MiTeGen mylar loops using Fomblin Y® and cooled to 100 K with an Oxford Cryostream 800. CCDC deposition numbers: 2301236-2301247

S1.1 Synthesis and characterisation of the azido derivatives

a1: Allyl azide ${ }^{1}$

3-Bromo-1-propene ($0.790 \mathrm{~mL}, 8.89 \mathrm{mmol}$, 1 equiv.) was added to a stirred suspension of sodium azide $(0.7437 \mathrm{~g}$, $11.44 \mathrm{mmol}, 1.29$ equiv.) in DMF (6 mL). After stirring at
 RT for 1 day, 10 ml of $\mathrm{H}_{2} \mathrm{O}$ was added to the solution, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 $\mathrm{mL} x 3$). The combined organic phases were concentrated to approximately half the original volume under reduced pressure (maintaining a temperature below $10^{\circ} \mathrm{C}$). The crude product was obtained within solution a in 42% yield (calculated from ${ }^{1} \mathrm{H}$ NMR) and was used without further purification.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.80-5.87$ (ddt, $1 \mathrm{H}, J-1=16.44 ; J-2=10.30 ; J-3=6.24 \mathrm{~Hz}$), $5.27(\mathrm{~m}$, $2 \mathrm{H}), 3.75(\mathrm{~d}, 2 \mathrm{H}, J=5.39 \mathrm{~Hz}) \mathrm{ppm}$.

a2: Azidobutane ${ }^{2}$

DMSO (6 mL) was added to a stirred solution of sodium azide ($0.7116 \mathrm{~g}, 10.95 \mathrm{mmol}, 1.5$ equiv.) in water (2 mL) at RT. 1-Bromopropane $(0.789 \mathrm{~mL}, 7.30$
 mmol, 1 equiv.) was then added. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 hours, after which two layers formed. The top layer contained the crude product as a clear oil, and was decanted for use in subsequent click reactions. The crude product was obtained in 97% yield $(0.44 \mathrm{~g})$. Analytical data is consistent with the literature.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.26(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.95 \mathrm{~Hz}$), 1.56-1.62 (pent, $2 \mathrm{H}, J=14.69 ; 7.24 ; 7.24$ $\mathrm{Hz}), 1.37-1.47(\mathrm{sext}, 2 \mathrm{H}, J-1=22.40 ; J-2=7.39 ; J-3=7.39 \mathrm{~Hz}), 0.92-0.96(\mathrm{t}, 3 \mathrm{H}, J=7.37 \mathrm{~Hz}) \mathrm{ppm}$. Mass (m/z): 122.05 (100), $123.05(5)[\mathrm{M}+\mathrm{Na}]$

a3: Phenyl azide ${ }^{3}$

A solution of $\mathrm{NaNO}_{2}(0.2908 \mathrm{~g}, 4.2 \mathrm{mmol}, 1.11$ equiv.) in water (6 mL) was added dropwise to a stirred solution of aniline ($0.35 \mathrm{~g}, 3.8 \mathrm{mmol}, 1$ equiv.) in $\mathrm{HCl}(2 \mathrm{M}, 11 \mathrm{~mL})$ cooled in an ice bath. The reaction mixture was allowed to
 stir for one hour, after which sodium azide ($0.6850 \mathrm{~g}, 10 \mathrm{mmol}, 2.8$ equiv.) dissolved in 12 mL water was added dropwise. The reaction was stirred for a further 4 hours at RT. The mixture was extracted with ethyl acetate ($30 \mathrm{~mL} x 3$) and the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give $\mathbf{a 3}$ as a transparent yellow oil ($0.3559 \mathrm{~g}, 88.49 \%$). The crude product was used directly without purification.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.33-7.37(\mathrm{t}, 2 \mathrm{H}, J=7.89 \mathrm{~Hz}), 7.12-7.15(\mathrm{t}, 1 \mathrm{H}, J=7.42 \mathrm{~Hz}), 7.02-7.04$ $(\mathrm{d}, 2 \mathrm{H}, J=7.64 \mathrm{~Hz}) \mathrm{ppm}$. The analytical data are consistent with the literature. ${ }^{4}$

a4: Benzyl Azide ${ }^{5}$

Benzyl bromide ($0.350 \mathrm{~mL}, 2.9 \mathrm{mmol}, 1$ equiv.) was added dropwise to a stirred solution of sodium azide ($0.285 \mathrm{~g}, 4.4 \mathrm{mmol}, 1.5$ equiv.) in (3:1 acetone/water, 4
 mL) at RT and allowed to react for 3 hours. The reaction was diluted with water and extracted with ethyl acetate ($10 \mathrm{~mL} x 3$). The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure at $25^{\circ} \mathrm{C}$, to give crude benzyl azide as a transparent light-yellow oil in 95% yield $(0.370 \mathrm{~g})$. The product was used without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.31-7.41(\mathrm{~m}, 5 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The analytical data are consistent with the literature. ${ }^{6}$

S1.2 Synthesis and characterisation of the alkyne derivative

1: 2,5-Dimethylpyrazine-1,4-N-oxide ${ }^{7}$

A solution of m-CPBA $77 \%(39.955 \mathrm{~g}, 178.28 \mathrm{mmol}, 3$ equiv.) in EtOAc (66 mL) was washed with brine (66 mL). The organic layer was separated, dried with MgSO_{4},
 and filtered. 2,5-Dimethylpyrazine ($6.5 \mathrm{~mL}, 59.428 \mathrm{mmol}, 1$ equiv.) was slowly added to the filtrate and the mixture was stirred for 24 hours at RT. The resulting white precipitate was collected over a glass frit, and washed with EtOAc (3 x 15 mL), to remove any byproducts. The white solid, was dried to give 1 in an 87% yield $(7.2660 \mathrm{~g})$.
${ }^{1}{ }^{1}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

2: 2,5-Bis(acetoxymethyl)pyrazine ${ }^{7}$

Method 1: A stirred suspension of $1(5.001 \mathrm{~g}$, 35.7 mmol , 1 equiv.) in acetic anhydride (25 mL , $260 \mathrm{mmol}, 7.4$ equiv.) was heated at $158^{\circ} \mathrm{C}$ for 7 hours, then allowed to cool to RT and stirred for a further 16 hours. The acetic anhydride was
 removed under reduced pressure to give a viscous black/brown liquid. Diethyl ether (125 mL) was added to the crude product, as an extraction solvent, and stirred vigorously for 2 hours, then stood for 3 hours at RT. The solution was then filtered through a thin pad of Celite, and the yellow filtrate collected. The solid crude residue was washed with additional 10 mL x 4 until minimal colour was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrates were concentrated under reduced pressure. The product was washed with RT 3:7 EtOAc:Hexane, and the remaining dark orange product was hot recrystallised from 3:7 EtOAc:Hexane, affording 2 as a light yellow crystalline in 25% yield.

Optimisation of Method 2:

The low yield of this reaction was a bottleneck for ligand synthesis. To increase the reaction efficiency in both time and yield, an initial reaction of compound 1 with 7 equiv. of acetic anhydride at $100^{\circ} \mathrm{C}$ for 1 hour indicated partial conversion to the desired product. A series of reactions lead to optimised conditions of compound 1 with 5 equiv. of acetic anhydride at $140^{\circ} \mathrm{C}$ for 3 hours.

Method 2:

Acetic anhydride ($1.87 \mathrm{~mL}, 19.5 \mathrm{mmol}, 5$ equiv.) was bubbled with Ar for one minute and added to a microwave vial containing 2,5-dimethylpyrazine (1) ($0.55 \mathrm{~g}, 3.9 \mathrm{mmol}, 1$ equiv.) which was sealed, then heated under stirring to $140^{\circ} \mathrm{C}$ for 3 hours using a microwave The excess acetic anhydride was removed under reduced pressure. Diethyl ether $(40 \mathrm{~mL})$ was added to the black solid and stirred at RT for two hours. A black solid byproduct was removed by filtration, and the yellow filtrate was concentrated under reduced pressure. The resulting yellow solid was purified by hot recrystallisation with EtOAc:Hexane ($1: 3$) ($0.37 \mathrm{~g}, 47 \%$) affording 2 as yellow plate crystals in a 47% yield $(0.37 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.61,(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. Mass $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]: 225.13$ (100), $226.10(9)[\mathrm{M}+\mathrm{Na}]: 247.16(100), 248.16(11)$. These results agreed with literature values.

Figure S1 Product 2 yield: held at increasing temperature (a 1:14 1: $\mathrm{Ac}_{2} \mathrm{O}$ ratio, held for one hour) yield increase

Figure S2 Product 2 yield: with variable $\mathrm{Ac}_{2} \mathrm{O}$ to reagent 1 ratio (held at $130{ }^{\circ} \mathrm{C}$ for three hours). The optimal ratio was 5:1.

Figure S 3 Product 2 yield: held at temperature for three hours (in a 5:1 ratio of $\mathrm{Ac}_{2} \mathrm{O}: \mathbf{1}$).

X-ray crystal structure of 2: 2,5-bis(acetoxymethyl)pyrazine

Yellow plate crystals suitable for single-crystal X-ray diffraction analysis were obtained from the addition of water into a methanolic solution of $\mathbf{2}$. The data was solved and refined in the monoclinic space group $P 2_{1} / c$, with the twin law $[-1,0,0,0,-1,0,0,0,1]$ and BASF $[0.450(6)]$. The asymmetric unit contains half unit of the molecule with no additional solvent present.

Crystal Data for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}(M=224.22 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $P 2_{1} / c$ (no. 14), $a=$ $11.3960(17) \AA, b=5.4689(8) \AA, c=8.3487(13) \AA, \beta=90.197(9)^{\circ}, V=520.32(14) \AA^{3}, Z=$ $2, T=100 \mathrm{~K}, \mu(\mathrm{CuK} \alpha)=0.949 \mathrm{~mm}^{-1}, \rho_{\text {calc }}=1.431 \mathrm{~g} \mathrm{~cm}^{-3}, 5326$ reflections measured $\left(7.758^{\circ} \leq 2 \Theta \leq 136.37^{\circ}\right), 927$ unique $\left(R_{\text {int }}=0.0966, \mathrm{R}_{\text {sigma }}=0.0662\right)$ which were used in all calculations. The final R_{1} was $0.0780(I \geq 2 \sigma(I))$ and $w R_{2}$ was 0.2152 (all data).

Figure S4 X-ray crystal structure showing a whole molecule of compound 2, with labelled heteroatoms. Ellipsoids are drawn at the 50% probability level.

3: 2,5-Bis(hydroxymethyl)pyrazine ${ }^{7}$

Fresh NaOMe solution was prepared by the piecewise addition of solid $\mathrm{Na}(0.3236 \mathrm{~g}, 14.1 \mathrm{mmol} 2$ equiv.) into dry $\mathrm{MeOH}\left(3 \mathrm{~mL}\right.$), followed by stirring for 15 minutes until no more solid remained. ${ }^{8}$

To the freshly prepared NaOMe was added a solution of $\mathbf{2}(1.5781 \mathrm{~g}, 7.04 \mathrm{mmol}, 1$ equiv.) in dry MeOH $(35 \mathrm{~mL})$ under argon, which was stirred for 3 hours at RT. The reaction was quenched by adding solid $\mathrm{NH}_{4} \mathrm{Cl}(0.05 \mathrm{~g})$. The solvent was concentrated under reduced pressure, resulting in the 2,5bis(hydroxymethyl)pyrazine product as a beige-white solid, 0.9152 g , in a 92.8%. This procedure resulted in the product $\mathbf{3}$, that required no further purification, its characterisation agreeing with literature values. ${ }^{7}$
${ }^{1}{ }^{1}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57$, (s $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 4.84, (s, 2H, CH2 $), 2.98$ (br, $1 \mathrm{H},-\mathrm{OH}$) ppm. MS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}] 141.17$ (100), 142.11 (7) These results agreed with literature values. ${ }^{7}$

4: 2,5-Bis((prop-2-yn-1-yloxy)methyl)pyrazine

Adapted from Delso, et al. ${ }^{9}$ Compound $\mathbf{3}(0.743 \mathrm{~g}, 5.3 \mathrm{mmol}, 1$ equiv.) was ground with a mortar and pestle into a fine beige powder, that was suspended in 65 mL of DMF, bubbled with Ar, and cooled to $0^{\circ} \mathrm{C}$. To this stirred solution, $\mathrm{NaH}(0.848 \mathrm{~g}, 21.2 \mathrm{mmol}, 4$ equiv. $)$ was added in small portions. When hydrogen liberation stopped, propargyl bromide ($0.95 \mathrm{~mL}, 10.75 \mathrm{mmol}, 3$ equiv.) was added dropwise. The reaction solution was stirred overnight at RT. The mixture was poured into 100 mL of ice water and the product extracted with hexane ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with MgSO_{4}, filtered and the solvent was removed under vacuum. Compound $\mathbf{4}$ was obtained as a clear, pale-yellow oil ($0.713 \mathrm{~g}, 83 \%$).
${ }^{1}$ H NMR (500 MHz, DMSO- d_{6}): $\delta 8.63(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 4 \mathrm{H}), 4.30(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=2.44 \mathrm{~Hz}), 3.51(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=2.4 \mathrm{~Hz}$) ppm. ${ }^{13} \mathbf{C}$ NMR (126 MHz ; DMSO-d d_{6}): $\delta 152.21,142.97,80.31,78.29,70.29,58.16 \mathrm{ppm}$. IR: $\bar{v}_{\text {max }}$ 2954, 2923, 2853, 1666, 1456, 1377, 1260, $736 \mathrm{~cm}^{-1}$. HRMS (m/z) (ESI+): calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} m / z=217.0972[\mathrm{~L}+\mathrm{H}]^{+}$. Found $(m / z): 217.0968[\mathrm{~L}+\mathrm{H}]^{+}, 239.0787[\mathrm{~L}+\mathrm{Na}]$.

S1.3 Synthesis and characterisation of the TzOP ligands

General CuAAC click synthesis of L1-L4:

The pyrazine bis-alkyne compound, $\mathbf{4}$, (1 equiv.) was reacted with the appropriate azide (2 equiv.) in a DCM: $\mathrm{H}_{2} \mathrm{O}$ (10:1) solution. A catalytic amount (0.1 equiv.) of sodium ascorbate was added and stirred at RT for 5 min until dissolved. An aqueous solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1$ equiv. 0.5 M) was added to the reaction. After stirring overnight, the reaction was washed with $\mathrm{H}_{2} \mathrm{O}$ until no further colour was removed. The organic solutions were also washed with $5 \mathrm{wt} \%$ EDTA aqueous solution followed by passage of the organic fraction through a silica plug and then concentrated under reduced pressure. The crude product was then dissolved in a minimal amount of MeOH , and the product crystallised upon the addition of water.

Ligand L1: 2,5-bis(((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)methyl)pyrazine
Following the general CuAAC method, using azido propene (a1) a light brown precipitate of $\mathbf{L} 1$ was obtained in an 81% yield.

m.p. $90-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta:=8.63(\mathrm{~s}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{ddt}, 2 \mathrm{H}, \mathrm{J}-1=$ $6.29, J-2=10.38, J-3=5.26 \mathrm{~Hz}), 5.25(\mathrm{~d}, 2 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.15(\mathrm{~d}, 2 \mathrm{H}, J=16.94 \mathrm{~Hz}) 5.01(\mathrm{~d}, 4 \mathrm{H}, J=$ 5.93 Hz), 4.68 ($\mathrm{s}, 8 \mathrm{H}$) ppm. ${ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta:=152.5,144.1,142.8,133.2,124.7$, $119.2,70.8,64.0,52.1,36.2,31.2 \mathrm{ppm}$. IR: $\bar{v}_{\text {max }} 3430,3143,2929,1664,1490,1464,1420,1390,1338$, 1260, 1223, 1140, 1095, 1049, 1033, 993, 942, 886, 834, $793 \mathrm{~cm}^{-1}$. HRMS (\mathbf{m} / z) (ESI+): calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z}=383.1085[\mathrm{M}+\mathrm{H}]^{+}$. Found $m / z=383.05[\mathrm{M}+\mathrm{H}] ; 405.12[\mathrm{M}+\mathrm{Na}] ; 787.28[2 \mathrm{M}+\mathrm{Na}]$.

L2: 2,5-Bis(((1-butyl-1H-1,2,3-triazol-4-yl)methoxy)methyl)pyrazine

Following the general CuAAC method, using azido butane (a2) a white precipitate of $\mathbf{L} \mathbf{2}$ was obtained in a 78% yield.

m.p. $89-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.63(2 \mathrm{H}, \mathrm{s}), 8.17(2 \mathrm{H}, \mathrm{s}), 4.67(4 \mathrm{H}, \mathrm{s}), 4.66(4 \mathrm{H}$, s), $4.34(4 \mathrm{H}, \mathrm{t}, J=7.05 \mathrm{~Hz}), 1.78(4 \mathrm{H}, \mathrm{q}, J=7.33 \mathrm{~Hz}), 1.23(4 \mathrm{H}$, hex, $J=7.45), 0.88(6 \mathrm{H}, \mathrm{t}, J$ $=7.38 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (126 MHz ; DMSO- d_{6}): $\delta 152.5,143.9,142.8,124.5,70.7,64.1,49.5$, $32.1,19.5,13.8 \mathrm{ppm}$ IR: $\bar{v}_{\max } 3430,3118,2955,2931,2872,1669,1484,1458,1375,1349$, 1255, 1218, 1143, 1091, 1056, 1035, 1027, 991, 941, 870, 802, $776 \mathrm{~cm}^{-1}$. HRMS ($\boldsymbol{m} / \boldsymbol{z}$) (ESI+): calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z}=415.2560[\mathrm{M}+\mathrm{H}]^{+}$. Found $m / z=415.2564[\mathrm{M}+\mathrm{H}]+, 437.2380$ [L+Na]+

L3: 2,5-Bis(((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)methyl)pyrazine

Following the general CuAAC method, using phenyl azide (a3), a pale orangebrown precipitate of $\mathbf{L} \mathbf{3}$ was obtained in a 74% yield.

m.p. $177-184{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 8.89(\mathrm{~s}, 2 \mathrm{H}), 8.71(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{~d}, 4 \mathrm{H}, J=8.31$ $\mathrm{Hz}), 7.60(\mathrm{t}, 4 \mathrm{H}, J=7.62 \mathrm{~Hz}), 7.50(\mathrm{t}, 2 \mathrm{H}, J=7.35 \mathrm{~Hz}), 4.78(\mathrm{~s}, 4 \mathrm{H}), 4.76(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (126 MHz ; DMSO-d d_{6} : $\delta 152.5,145.2,142.9,137.1,130.4,129.1,122.9,120.5,70.9,63.9 \mathrm{ppm}$. IR: $\bar{\nu}_{\max } 3400,3125,3078,2920,2860,1598,1557,1501,1480,1466,1445,1386,1345,1264,1236,1196$, 1095, 1053,1030, 998, 944, 758, $689 \mathrm{~cm}^{-1}$. HRMS (m/z) (ESI+): calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z}=$ $455.1938[\mathrm{~L}+\mathrm{H}]^{+}$. Found (m/z): $455.1933[\mathrm{~L}+\mathrm{H}], 477.1752[\mathrm{~L}+\mathrm{Na}]$.

L4: 2,5-bis(((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)methyl)pyrazine

Following the general CuAAC method, using benzyl azide (a4), a pale brown precipitate of $\mathbf{L 4}$ obtained in a 63% yield.

m.p. $125-129{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz ,

DMSO-d ${ }_{6}$: $\delta 8.62(\mathrm{~s}, 2 \mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 6 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 4.67$ ($\mathrm{s}, 4 \mathrm{H}$), $4.66(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (126 MHz ; DMSO-d d_{6}): $\delta 152.5144 .4,142.8,136.5,129.2$, 128.6, 128.4, 124.8, 70.8, 64.0, 53.2 ppm. IR: $\bar{v}_{\max } 3408,3130,3065,3031,2925,2096,1605$, $1497,1455,1435,1362,1333,1217,1157,1123,1076,1053,1030,987,824,720,696,576 \mathrm{~cm}^{-}$
${ }^{1}$. HRMS (m/z) (ESI+): calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{8} \mathrm{O}_{2}{ }^{+} \mathrm{m} / \mathrm{z}=483.2251[\mathrm{~L}+\mathrm{H}]^{+}$. Found $(\mathrm{m} / \mathrm{z})$: $505.2065[\mathrm{~L}+\mathrm{Na}], 483.2247[\mathrm{~L}+\mathrm{H}]$.

X-ray crystal structure of L2: 2,5-bis(((1-butyl-1H-1,2,3-triazol-4-yl)methoxy)methyl)pyrazine

White needle-like crystals suitable for single-crystal X-ray diffraction analysis were obtained from the addition of water into a methanolic solution of $\mathbf{L} 2$. The data was solved and refined in the triclinic space group $P \overline{1}$ with the asymmetric unit containing two separate $\mathbf{L} \mathbf{2}$ fragments. Crystallographic symmetry generates rows of ligands of alternating orientations about the central pyrazine (Fig. S5). The two fragments in the asymmetric unit adopt different Z-shaped conformations, with the 'bend' of the ligand occurring in different sides of the ether oxygen atom. The O1 oxygen lies relatively planar to the N1 pyrazine with a C1-C2-C3-O1 dihedral of $27.5(3)^{\circ}$, and relatively perpendicular to the N 2 triazole with an O1-C4-C5-C6 dihedral of $76.2(3)^{\circ}$, compared to the second ligand orientation where the O 2 ether oxygen lies more perpendicular to its N 5 pyrazine with a $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 2$ dihedral of $61.7(3)^{\circ}$ and more planar to the N6 triazole, with an O2-C14-C15-N6 dihedral of 8.4(2) ${ }^{\circ}$.

Crystal Data for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2}(M=414.52 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $P \overline{1}$ (no. 2), $a=4.5792(4) \AA, b=9.5207(8) \AA, c=24.601(2) \AA, \alpha=86.182(4)^{\circ}, \beta=86.199(4)^{\circ}, \gamma=$ $81.258(4)^{\circ}, V=1056.02(16) \AA^{3}, Z=2, T=100 K, \quad \mu(\mathrm{CuK} \alpha)=0.722 \mathrm{~mm}^{-1}, \rho_{\text {calc }}=$ $1.304 \mathrm{~g} / \mathrm{cm}^{3}, 15004$ reflections measured $\left(7.214^{\circ} \leq 2 \Theta \leq 130.154^{\circ}\right), 3565$ unique $\left(R_{\mathrm{int}}=0.0559\right.$,
$\left.R_{\text {sigma }}=0.0481\right)$ which were used in all calculations. The final R_{1} was $0.0961(I \geq 2 \sigma(I))$ and $w R_{2}$ was 0.2957 (all data).

Figure S5 The (a) intermolecular pyrazine...pyrazine hydrogen bonding interactions [1] (shown using

(a)

a blue line) of parallel molecules, between alternating orientations of adjacent pyrazine and (b) the triazole \cdots triazole hydrogen bonding interactions between layers of molecules [2] and [3] (shown using blue lines). Ellipsoids are drawn at the 50% probability level.

The ligands are held together by intermolecular hydrogen bonding interactions between the two pyrazine centres of the alternate ligand arrangements, with the C 1 pyrazine carbon of one ligand donating a hydrogen bond to the N5 pyrazine nitrogen of the other ligand, with an $\mathrm{C} \cdots \mathrm{N}$ of 3.391 (4) \AA and a C-H $\cdots \mathrm{N}$ angle of $163.01(16)^{\circ}$, (Fig. S5). Additional intermolecular hydrogen bonding interactions exist between the C 6 triazole carbon donating to the O 2 ether oxygen and N 6 triazole nitrogen of the alternatingly bent arms of the neighbouring ligands, which generate a three-dimensional intermolecular network, (Table 2).

Table: The bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of the intermolecular forces between $\mathbf{L} 2$ ligands in Figure S5

	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} / \AA$	$\mathrm{H} \cdots \mathrm{A} / \AA$	$\mathrm{D} \cdots \mathrm{A} / \AA$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} /{ }^{\circ}$
$[\mathbf{1}]$	$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 5$	$0.950(3)$	$2.471(2)$	$3.391(4)$	$163.01(16)$
$[\mathbf{2}]$	$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$	$0.950(3)$	2.4922	$3.351(3)$	$150.43(15)$
$[3]$	$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N} 6$	$0.950(3)$	$2.619(2)$	$3.369(4)$	$136.10(17)$

S1.4 SCXRD of organic compounds

Identification code	2	L2
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2}$
Deposition No.	2301236	2301237
Formula weight	224.22	414.52
Temperature / K	100.00	100.00
Crystal system	monoclinic	triclinic
Space group	P2 $1_{1} / \mathrm{c}$	$P \overline{1}$
a / \AA	11.3960(17)	4.5792(4)
b/A	5.4689(8)	9.5207(8)
c / \AA	8.3487(13)	24.601(2)
$\alpha 1^{\circ}$	90	86.182(4)
$\beta 1^{\circ}$	90.197(9)	86.199(4)
$\gamma 1^{\circ}$	90	81.258(4)
Volume / \AA^{3}	520.32(14)	1056.02(16)
Z	2	2
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.431	1.304
μ / mm^{-1}	0.949	0.722
F(000)	236.0	444.0
Crystal size / mm	$0.1 \times 0.04 \times 0.02$	$0.27 \times 0.07 \times 0.02$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178)$	$\operatorname{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection / ${ }^{\circ}$	7.758 to 136.37	7.214 to 130.154
Index ranges	$\begin{aligned} & -13 \leq h \leq 13,-6 \leq k \leq 6, \\ & -10 \leq l \leq 10 \end{aligned}$	$\begin{aligned} & -5 \leq h \leq 5,-10 \leq k \leq 11, \\ & -28 \leq l \leq 28 \end{aligned}$
Reflections collected	5326	15004
Independent reflections	$\begin{aligned} & 927\left[R_{\text {int }}=0.0966,\right. \\ & \left.R_{\text {sigma }}=0.0662\right] \end{aligned}$	$\begin{aligned} & 3565\left[\mathrm{R}_{\text {int }}=0.0559,\right. \\ & \left.\mathrm{R}_{\text {sigma }}=0.0481\right] \end{aligned}$
Data/restraints/parameters	927/0/76	3565/0/273
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.166	1.250
Final R indexes $[I \geq 2 \sigma(I)]$	$\mathrm{R}_{1}=0.0780, w \mathrm{R}_{2}=0.2125$	$\mathrm{R}_{1}=0.0961, w \mathrm{R}_{2}=0.2734$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0807, w \mathrm{R}_{2}=0.2152$	$\mathrm{R}_{1}=0.1093, w \mathrm{R}_{2}=0.2957$
Largest diff. peak/hole / e \AA^{-3}	0.80/-0.42	1.24/-0.39

S2 Characterization of Products

S2.1 UV-Vis Specroscopy

UV-vis spectroscopy titration experiments: (Top Left) stepwise addition of $6.1 \mu \mathrm{~L}$ of $5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ of solution of $\mathrm{Zn}\left(\mathrm{BF}_{4}\right)_{2}$ to a $9.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathbf{L} \mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$. (Top Right) stepwise addition of 6.1 $\mu \mathrm{L}$ of $5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ of solution of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}$ to a $9.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathbf{L 2}$ in $\mathrm{CH}_{3} \mathrm{CN}$. (Bottom Left) stepwise addition of $3.2 \mu \mathrm{~L}$ of $5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ of solution of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}$ to a $9.42 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathbf{L 4}$ in $\mathrm{CH}_{3} \mathrm{CN}$. (Bottom Right) stepwise addition of $3.2 \mu \mathrm{~L}$ of $5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ of solution of $\mathrm{Zn}\left(\mathrm{BF}_{4}\right)_{2}$ to a $9.42 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathbf{L 4}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Where the red represents 0 equiv. Zn^{2+} blue is $0.5 \mathrm{Zn}^{2+}$ equiv. and green $1 \mathrm{Zn}^{2+}$ equiv. added. The inset graphs show the changes in the absorption with the increase of the amount of transition metal ions. The dashed yellow data in graph c represents $1.12 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$ of complex $\mathbf{4 a}$ in MeCN , scaled to the peak of the one Zn^{2+} equiv. indicating the formation of the polymer.

S2.2 L1 and L2 complexes

(a)

(b)

(c)
(d)

(e)

(f)

Figure S 6 A perspective view of a section of the x-ray structures of (a) the $\mathbf{L} \mathbf{1}$ complex $\mathbf{1 A}$ and (b) the $\mathbf{L} 2$ complex $2 \mathbf{A}$ (which is isostructural with $2 \mathbf{B}$ and $\mathbf{2 C}$) with the asymmetric unit labelled. Counterions have been removed for clarity. A summary view of the CP complexes illustrating the variation in the alkyl end-group arrangement, and the N1-M-N2-O1 torsion in (c) $\mathbf{1 A}$; (d) $\mathbf{2 C}$; (e) $\mathbf{2 A}$; and (f) 2B. Ellipsoids are drawn at the 50% probability level.

With regards to the complexes assembled from the alkyl-end-group ligands $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{2}$, all four complexes were solved and refined in centrosymmetric monoclinic space groups: $C 2 / c$ (for $\mathbf{1 A}$, $\mathbf{2 A}$ and 2C) and $P 2_{1} / n$ (for $\mathbf{2 B}$), where $\mathbf{1 A}, \mathbf{2 A}$ and $\mathbf{2 C}$ had an asymmetric unit of one half of an $\mathbf{L} 2$ ligand coordinated to a half-occupancy of an \mathbf{M}^{2+} ion, with an associated counterion, while 2B had an asymmetric unit of one $\mathbf{L} 2$ ligand coordinated to a single Fe^{2+} centre, with two associated perchlorate ions. Additionally, in complex 1A the end two carbon atoms of the propene end group of the $\mathbf{L} \mathbf{1}$ ligand are spatially disordered in a $1: 1$ ratio, and in complex $\mathbf{2 c}$ the middle two carbon atoms of the $\mathbf{L} \mathbf{2}$ butyl end group are disordered in a 1:3 ratio.

1A (100)

1A (a axis)

10

2A (001)

2A (c axis)

Figure S 7 Left hand side: the (100) view; a view down the a-axis; and a view of the $\mathbf{1 A}$ complex polymer. Right hand side: the (001) view; a view down the c-axis; and a view of the $\mathbf{2 A}$ complex polymer
an on

54.

2B(100)

2B (a axis)

2C(001)

2C (c axis)

Figure S 8 Left hand side: the (100) view; a view down the a-axis; and a view of the 2B complex polymer. Right hand side: the (001) view; a view down the c-axis; and a view of the 2 C complex polymer

Figure S 9 The (001) view; a view down the c-axis; and a view of the 2D complex polymer

Figure S 10 A perspective view of a section of the zig-zag polymer strands of complex 1A, analogous to the other ligand $\mathbf{L} \mathbf{1}$ complexes. The perchlorate anions have been removed for clarity. (a) With the distance of 3.66 (7) Å between neighbouring C9 alkene carbons of adjacent CPs [1]. A perspective view of the sphere packing of a 2 D sheets formed by the overlapping of alkyl tails of adjacent coordination polymer chains, as seen down (b) the a -axis and (c and d) the c -axis. The left-most CP is coloured by element, while the middle chain (orange) and right-most chain (green) are coloured to more easily see the overlapping alkyl groups. Ellipsoids are drawn at the 50% probability level.

Figure S11 A perspective view of a section of the zig-zag polymer strands of complex $\mathbf{2 A}$, analogous to the other ligand $\mathbf{L} 2$ complexes The perchlorate anions have been removed for clarity. A perspective view down the a-axis (a) in an ellipsoidal view, and (b) a sphere packing view, of a section of the zigzag polymer strands of complex, where the butyl end groups are held closely together with distances of [1] C7-C9 ${ }^{1} 3.735$ (7); [2] C8-C9 ${ }^{1} 4.037$ (8); and C8-C9 ${ }^{2} 4.171$ (10) Å. A view down the c-axis (c) in an ellipsoidal view, and (d) a sphere packing view, of a 2D sheets formed by the overlapping of alkyl tails of adjacent coordination polymer chains.

S2.3 L3 Complexes

Figure S 12 An ellipsoidal view of the length of a 1D polymer chain. The intermolecular $\mathrm{CH}-\pi$ interactions between the calculated C7-C13phenyl centroid (shown as a red sphere) and the C4 carbon of and adjacent chain, resulting in the overlap of planar ligands of adjacent polymer chains of the 3A complex.

Figure S 13 A perspective view down the a-axis of polymer strands of the 3A complex in a sphere packing view. Perchlorate anions have been removed for clarity.

S2.4 L4 Complexes

Figure S 14 A perspective view of two polymer chains of 4 A 'zipped' together by the $\pi-\pi$ interactions of the C21-C26 centroid of the perpendicular ligands (coloured pink) with the off-set ligands (coloured green) (b) shown in 50\% probability level ellipsoids

Figure S 15 A sphere packing view of the interlocked polymer chains of 4A in a 2D sheet separate polymer chains are coloured for clarity.

S2.5 Powder XRD spectra

Powder XRD was investigated as a technique for determining sample purity for bulk quantities. Samples tested; $\mathbf{1 A}, \mathbf{2 A}$ and $\mathbf{4 B}$, resulted in patterns that indicate structures corresponding to the crystalline polymer materials exhibited by the SCXRD data.

Figure S 16 The comparison between the calculated and experimental PXRD spectra for $\mathbf{1 A}$.

Figure S 17 The comparison between the calculated and experimental PXRD spectra for $\mathbf{2 A}$.

Figure S 18 The comparison between the calculated and experimental PXRD spectra for 4B.

S3 NMR Spectra

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of azido butane in CDCl_{3}.

Figure $\mathbf{S 2 0}{ }^{1} \mathrm{H}$ NMR spectrum of phenyl azide in CDCl_{3}.

Figure S21 ${ }^{1} \mathrm{H}$ NMR spectrum of benzyl azide in CDCl_{3}.

Figure S22 ${ }^{1} \mathrm{H}$ NMR spectrum of 2,5-dimethylpyrazine-1,4-N-oxide (1) in DMSO-d ${ }_{6}$.

Figure $\mathbf{S 2 3}{ }^{1} \mathrm{H}$ NMR spectrum of 2,5-bis(acetoxymethyl)pyrazine (2) in CDCl_{3}.

Figure $\mathbf{S 2 4}{ }^{1} \mathrm{H}$ NMR spectrum of 2,5-bis(hydroxymethyl)pyrazine (3) in DMSO-d ${ }_{6}$.

Figure S25 ${ }^{1} \mathrm{H}$ NMR spectrum of 2,5-bis((prop-2-yn-1-yloxy)methyl)pyrazine (4) in DMSO-d d_{6}.

Figure S26 ${ }^{13}$ C NMR spectrum of 2,5-bis((prop-2-yn-1-yloxy)methyl)pyrazine (4) in DMSO-d ${ }_{6}$.

Figure $\mathbf{S 2 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} \mathbf{1}$ in DMSO-d ${ }_{6}$.

Figure S28 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} 1$ in DMSO-d ${ }_{6}$.

Figure S29 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} \mathbf{2}$ in DMSO-d ${ }_{6}$.

$\stackrel{\sim}{\sim}$	
ヘัٌ	¢ัֹ
	//

Figure $\mathbf{S 3 0}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} \mathbf{2}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$.

Figure $\mathbf{S 3 1}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 3}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$.

Figure $\mathbf{S 3 2}{ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{L} \mathbf{3}$ in DMSO-d ${ }_{6}$.

Figure S $33{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} \mathbf{4}$ in DMSO.

Figure $\mathbf{S} 34{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 4}$ in DMSO.

S4 Infrared Spectra

S4.1 ATR-IR : organic precursors and ligands

Figure S $\mathbf{3 5}$ ATR-IR of alkyne compound $\mathbf{4}$

Figure S $\mathbf{3 6}$ ATR-IR of L1

Figure S $\mathbf{3 7}$ ATR-IR of L2

Figure S 38 ATR-IR of L3

Figure S 39 ATR-IR of L4

S4.2 ATR-IR : coordination polymer complexes

Figure S 40 Complex 1A: $\left\{[\mathrm{Cu}(\mathbf{L} 1)]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{\mathrm{n}}$

Figure S 41 Complex 2A: $\left\{[\mathrm{Zn}(\mathbf{L} 2)]\left(\mathrm{BF}_{4}\right)_{2}\right\}_{\mathrm{n}}$

Figure S 42 Complex 2B: $\left\{[\mathrm{Fe}(\mathbf{L 2})]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{\mathrm{n}}$

Figure S 43 Complex 2C: $\left\{[\mathrm{Cu}(\mathbf{L 2})]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{\text {n }}$

Figure S 44 Complex 3A: $\left\{[\mathrm{Mn}(\mathbf{L 3})]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{\mathrm{n}}$

Figure S 45 Complex 3B: $\left\{[\mathrm{Zn}(\mathbf{L 3})]\left(\mathrm{ClO}_{4}\right)_{2}\right\}$

Figure S 46 3C: $\left\{[\mathrm{Zn}(\mathbf{L 3})](\mathrm{OTf})_{2}\right\}_{\infty}$

Figure S 47 Complex 4A: $\left\{[\mathrm{Zn}(\mathrm{L} 4)]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{\mathrm{n}}$

Figure S 48 Complex 4B: $\left\{[\mathrm{Co}(\mathbf{L} 4)]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{\mathrm{n}}$

Figure S 49 Complex 4C: $\left\{[\mathrm{Cu}(\mathbf{L 4})]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{\mathrm{n}}$

References

B. Yang, H. Zhang, H. Peng, Y. Xu, B. Wu, W. Weng and L. Li, Polym. Chem., 2014, 5, 1945-1953.
2.
K. Darrah, T. Wang, I. Cook, M. Cacace, A. Deiters and T. S. Leyh, J. Biol. Chem., 2019, 294, 2293-2301.
J.-W. Zhao, J.-W. Guo, M.-J. Huang, Y.-Z. You, Z.-H. Wu, H.-M. Liu and L.-H. Huang, Steroids, 2019, 150, 108431.
M. Kitamura, M. Yano, N. Tashiro, S. Miyagawa, M. Sando and T. Okauchi, Eur. J. Inorg. Chem., 2011, 2011, 458-462.
Q. Yan, X. Shen, G. Zi and G. Hou, Eur. J. Chem., 2020, 26, 5961-5964.
J. Pietruszka and G. Solduga, Eur. J. Inorg. Chem., 2009, 2009, 5998-6008.
S. K. Das and J. Frey, Tetrahedron Lett., 2012, 53, 3869-3872.
D. D. Perrin, W. L. Armarego and D. R. Perrin, Purification of laboratory chemicals, 1988.
I. Delso, J. Valero-Gonzalez, F. Gomollón-Bel, J. Castro-López, W. Fang, I. Navratilova, D. M. F. van Aalten, T. Tejero, P. Merino and
R. Hurtado-Guerrero, ChemMedChem, 2018, 13, 128-132.

