Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2024

> Project M: Investigating the effect of additives on calcium carbonate crystallisation through a school citizen science program.

> > Supplementary Information

Contents

Table of Figures	3
Methods	4
Materials	4
Synthetic Procedure	4
Synchrotron X-ray Powder Diffraction Data Collection and Analysis	5
Structural Information	7
Reference Cells for Vaterite Refinements	8
Calcite refined mean lattice parameters and standard deviations	9
Vaterite refined mean lattice parameters and standard deviations	
Calcite <i>a</i> for Additive Groupings	11
Vaterite <i>c</i> for Additive Groupings	12
Vaterite <i>a</i> for Additive Groupings	13
References	14

Table of Figures

Methods

Materials

The following chemicals were purchased or donated by Sigma Aldrich and used as received; CaCl₂.2H₂O and Na₂CO₃ (both ACS reagents, 99.5%), Adipic Acid (99%), L-Alanine (\geq 98%), L-Asparagine (\geq 98%), L-Aspartic Acid (\geq 98%), L-Cysteine (97%), L-Glutamine (\geq 99%), L-Glutamic Acid (\geq 99%), Glutaric Acid (99%), Glycine (\geq 99%), L-Histidine (\geq 99%), L-Isoleucine (\geq 98%), L-Leucine (\geq 98%), L-Lysine (\geq 98%), Malonic Acid (99%), L-Methionine (\geq 98%), L-Phenylalanine (\geq 98%), Pimelic Acid (99%), L-Proline (\geq 99%), L-Serine (\geq 99%), Succinic Acid (\geq 99%), L-Threonine (\geq 98%), L-Tryptophan (\geq 98%), L-Valine (\geq 98%).

Synthetic Procedure

Standard solutions of 0.1 M CaCl₂.2H₂O (A) and 0.1 M Na₂CO₃ (B) were prepared using deionised water. The Control samples were made by mixing 100 mL of A and 100 mL B for two minutes in a conical flask, filtering with standardised filter paper and funnels, washing with water and subsequently quenching the reaction with isopropanol or acetone. This process was repeated eight more times with the addition of a different concentration of the additive (see Table 1) to 100 mL of A before mixing A with B. The concentrations of the additives were selected based on the maximum solubilities of the individual additives as well as the routine equipment available at the majority of schools based on conversations with multiple teachers and lab technicians e.g., balances up to 2 decimal places are the norm in school laboratories and the units conventionally used are dm⁻³. The synthetic procedures were provided to the schools both via written procedure and video. Each school made one series with a given additive and each series was made 4 times in different schools to ensure consistency. The resulting precipitates were left to dry on the filter paper in a dry place for one week before the powdered sample was loaded into a 0.5 mm Kapton capillary. The samples were returned to Diamond and mounted in a brass pin and brass holder for the diffraction experiment. Samples were checked to ensure they were correctly filled and re-filled where necessary. Each brass holder had a barcode inset into the base that was scanned before each data collection so the sample and the scan can be correlated.

Additive Concentrations of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2							
Arg	Asn						
GluAci	Gly						
lle	Lys						
Met	Pro						
SucAci	Thr						
Additive Concentrations of 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5 and 1.75							
Phe							
Additive Concentrations of 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5							
Glu	Try						
Additive Concentrations of 0.2, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.7							
Additive Concentrations of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1							
PimAci							
Mixing Times (seconds)							
30, 60, 180, 240, 300, 360, , 480, 600							
	ations of 0.25, 0 Arg GluAci Ile Met SucAci ations of 0.1, 0.2 Phe ations of 0.1, 0.2 Glu ations of 0.2, 0.2 PimAci onds) 00, 360, , 480, 60						

Table 1 - List of amino acids used in syntheses

Synchrotron X-ray Powder Diffraction Data Collection and Analysis

Significant software and hardware updates were implemented on I11 to upgrade the robot and carousel, to enable the scanning of the barcodes for each sample, to install cameras for sample photographs, to facilitate live tweeting of the data via @DLSProjectMLive and to create a new database to handle the data. One diffraction pattern was collected for each sample at Beamline I11 at Diamond Light Source in a 24-hour period using the Mythen II position sensitive detector.^{1, 2} All data were collected at room temperature with a wavelength of 0.825786(10) Å, using the robotic arm to mount each sample (Figure 1). The Project M Scientists were provided with a modified version of the DAWN software through a web interface for phase identification of their materials and for comparison with standards and other related samples from other schools. Data were analysed using Pawley refinement via the TOPAS 4.2 software package³ using jEdit in batch mode. An initial script was used to identify the presence of calcite or vaterite based of the intensity of the calcite 104 or the vaterite 010 reflections. Only phases indicated as present were included in the relevant polymorph were included in further analysis.

The full dataset and associated file information are available on Zenodo.

Figure 1 - Robot (blue object to left of image) mounting the sample on the diffractometer (left) and capillary of 66-01 in position on the diffractometer (right)

Structural Information

Table 2 - Standard deviations for calcite and vaterite for the Control samples, for the samples synthesised with additives ('All Additives'), for the Mixing samples, and for Synthetic and Biogenic literature samples of Calcite. N is the number of samples in which the respective polymorph is present.

Polymorph	<i>a</i> Mean	σα	c Mean	σ _c	Volume Mean	σ _{Volume}	
Calcite Control (N=84)	4. 99705	0.00186	17.06045	0.00435	368.9343	0.20184	
Calcite All							
Additives	4.99604	0.00193	17.07227	0.01142	369.04069	0.24107	
(N=573)							
Calcite Mixing	1 00952	0.00176	17 05926	0.00204	260 10644	0 2111	
Only (N=16)	4.55655	0.00170	17.05650	0.00294	509.10044	0.2111	
Synthetic							
Calcite	4.98986	0.00204	17.06398	0.00874	367.9493	0.41268	
(N=13) ⁴⁻¹¹							
Biogenic Calcite	1 09169	0.01270	17 02572	0.0552	266 1441	2 0167	
(N=32) ^{4, 11-15}	4.90100	0.01279	17.05572	0.0555	500.1441	5.0107	
Vaterite Control	1 12902	9.05675E-	9 17261	0.0010	125 05001	0.02624	
(N= 37)	4.12002	4	0.47304	0.0019	125.05001	0.03034	
Vaterite All							
Additives	4.12814	0.00108	8.47411	0.00228	125.06424	0.04365	
(N=412)							
Vaterite Mixing	1 12012	2 615 4	0 17170	0.0012	125 07202	0.01756	
Only (N=8)	4.12013	3.01E-4	0.4/4/0	0.0012	123.07392	0.01/30	

Reference Cells for Vaterite Refinements

Each of the published unit cells for vaterite was used in a refinement with calcite for the set of Controls samples. Both unit cells were allowed to freely refine. The mean and standard deviations for the associated lattice parameters for the 84 calcite control samples and the 37 vaterite control samples are presented in Table 1 and 2 respectively. The Kamhi vaterite cell¹⁶ had the lowest standard deviation for both polymorphs and had the better fit across both polymorphs, and was therefore used in this work.

Calcite									
Vaterite Unit Cell Used	a Mean	σα	<i>c</i> Mean	σ _c	Volume Mean	σvolume			
Demichelis C1_1 ¹⁷	4.99712	0.00335	17.05667	0.02115	368.8621	0.60168			
Demichelis C121 ¹⁷	4.99696	0.00291	17.05797	0.01354	368.8665	0.52991			
Demichelis P3231 ¹⁷	4.99818	0.00919	17.04344	0.10397	368.7256	1.09263			
Wang P3231 ¹⁸	4.99741	0.00507	17.06042	0.00857	368.9869	0.68683			
Kamhi ¹⁶	4.99701	0.00186	17.06068	0.00441	368.9334	0.20376			

Table 3 - Calcite (top) and Vaterite (bottom) units cells from refinements with the Controls samples

Vaterite														
Vaterite Unit Cell	<i>a</i> Mean	σα	<i>b</i> Mean	σ _b	<i>c</i> Mean	σ _c	Al Mean	σ _{ΑΙ}	<i>Be</i> Mean	σ _{Be}	<i>Ga</i> Mean	σ _{Ga}	Volume Mean	σ _{Volume}
Demichelis C1_1 ¹⁷	12.74956	0.21857	7.13808	0.04587	25.66026	0.14105	89.69247	0.55628	99.60814	1.07794	90.73727	0.58051	2301.413	27.62445
Demichelis C121 ¹⁷	12.39038	0.01675	6.9528	0.03174	9.44425	0.03473			115.1022	0.06779			736.7459	0.90549
Demichelis P3231 ¹⁷	7.664	0.01314			26.0543	0.02316							1325.325	4.16663
Wang P3231 ¹⁸	7.14305	0.05582			25.48654	0.19765							1126.199	16.31555
Kamhi ¹⁶	4.12802	9.05675E- 4			8.47364	0.0019							125.05001	0.03634

Calcite refined mean lattice parameters and standard deviations

Table 4 - Calcite refined mean lattice parameters and standard deviations for the additives presented in this work

Calcite								
Additive	N total	Mean	σα	Mean	σ _c	Mean	σ _{Volume}	
Controls	84	4.99705	0.00186	17.06045	0.00435	368.9343	0.20184	
AdiAc	15	4.99322	8.48E-4	17.07069	0.00521	368.59036	0.09299	
Ala	27	4.99584	0.00162	17.06989	0.00731	368.9587	0.21637	
Arg	23	4.99862	0.00189	17.05815	0.00386	369.11639	0.21048	
Asn	27	4.99485	0.0013	17.0818	0.00509	369.07034	0.16759	
Asp	30	4.99407	0.00204	17.08525	0.00999	369.02928	0.26124	
Cys	26	4.99547	0.00104	17.08063	0.00913	369.13691	0.12424	
Gln	22	4.99651	5.71E-4	17.07627	0.0085	369.19653	0.14765	
Glu	38	4.99458	0.00153	17.08509	0.0163	369.10079	0.23734	
Gly	29	4.99605	0.00104	17.08192	0.01148	369.2499	0.27933	
His	34	4.99579	0.001	17.07625	0.00713	369.08959	0.20019	
lle	23	4.99688	6.31E-4	17.0639	0.00194	368.98334	0.09935	
Leu	28	4.9966	7.29E-4	17.0659	0.0052	368.98479	0.09538	
Lys	31	4.9986	7.57E-4	17.05989	0.00214	369.14998	0.08843	
MalAci	8	4.9931	0.00285	17.07218	0.00738	368.6043	0.38494	
Met	16	4.99662	4.52E-4	17.07319	0.00794	369.14615	0.14165	
Mixing	16	4.99853	0.00176	17.05836	0.00294	369.10644	0.2111	
Phe	18	4.99568	9.46E-4	17.06715	0.00291	368.87668	0.15516	
PimAci	14	4.99355	0.00125	17.06917	0.00331	368.60483	0.21887	
Pro	26	4.99755	0.00112	17.06475	0.0032	369.10128	0.15911	
Ser	26	4.99598	0.00267	17.07246	0.01009	369.03492	0.27523	
SucAci	10	4.9955	0.00216	17.06813	0.00771	368.87097	0.28413	
Thr	30	4.99565	0.00101	17.07927	0.00509	369.13388	0.16318	
Trp	24	4.99691	0.00101	17.06915	0.01069	369.10071	0.21153	
Val	32	4.99637	0.00107	17.06452	0.0028	368.92081	0.15107	
All	573	4.99604	0.00193	17.07227	0.01142	369.04069	0.24107	
Additive								
Samples								

Vaterite refined mean lattice parameters and standard deviations

Table 5 - Vaterite refined mean lattice parameters and standard deviations for the additives presented in this work

Vaterite								
Additive	N total	Mean	σα	Mean	σ _c	Mean	σ_{Volume}	
Controls	37	4.12802	9.05675E- 4	8.47364	0.0019	125.05001	0.03634	
AdiAc	10	4.12773	5.88E-4	8.47364	0.00183	125.03256	0.02133	
Ala	23	4.12859	9.58E-4	8.47267	0.00224	125.07015	0.0357	
Arg	12	4.12712	0.00138	8.47536	0.00308	125.02069	0.04983	
Asn	22	4.12756	9.35E-4	8.47518	0.00143	125.04503	0.04032	
Asp	23	4.12682	0.00126	8.4779	0.00178	125.04049	0.06051	
Cys	17	4.12833	8.51E-4	8.47376	0.00104	125.07067	0.04344	
Gln	17	4.12774	5.17E-4	8.47469	9.04E-4	125.04888	0.02607	
Glu	36	4.12768	0.00134	8.47502	0.00313	125.04991	0.04325	
Gly	27	4.12902	0.00117	8.47369	0.00164	125.11133	0.05636	
His	24	4.12854	8.11E-4	8.47297	0.00175	125.07149	0.02886	
lle	14	4.12831	4.01E-4	8.47364	0.00169	125.0677	0.01699	
Leu	14	4.12863	5.55E-4	8.47281	0.00128	125.07508	0.02421	
Lys	12	4.12761	5.46E-4	8.47412	0.00149	125.03244	0.0181	
MalAci	6	4.12611	0.00119	8.47756	0.00315	124.99228	0.06198	
Met	9	4.12769	5.08E-4	8.47444	0.00114	125.04196	0.02483	
Mixing	8	4.12813	3.61E-4	8.47478	0.0012	125.07392	0.01756	
Phe	15	4.12824	9.15E-4	8.47284	0.00167	125.05175	0.03505	
PimAci	5	4.12835	8.44E-4	8.47375	0.00113	125.0718	0.03776	
Pro	24	4.1283	4.79E-4	8.474	0.00129	125.0721	0.02596	
Ser	25	4.12907	7.93E-4	8.47293	0.00189	125.10357	0.03629	
SucAci	4	4.12786	0.00129	8.47645	0.00587	125.08221	0.02426	
Thr	26	4.12845	7.78E-4	8.47377	0.00106	125.07807	0.03665	
Trp	23	4.12841	5.12E-4	8.47357	0.00149	125.07275	0.02654	
Val	16	4.1285	5.69E-4	8.47256	0.00166	125.06319	0.02562	
All Additive	412	4.12814	0.00108	8.47411	0.00228	125.06424	0.04365	
Samples								

Calcite a for Additive Groupings

Figure 2 - The mean lattice parameter of calcite *a* with the corresponding standard deviations, presented on the same relative scale and categorised according to the additive groupings (presented in increasing size).

Vaterite c for Additive Groupings

Figure 3 - The mean lattice parameter of vaterite *c* with the corresponding standard deviations, presented on the same relative scale and categorised according to the additive groupings (presented in increasing size).

Vaterite a for Additive Groupings

Figure 4 - The mean lattice parameter of vaterite *a* with the corresponding standard deviations and categorised according to the additive groupings (presented in increasing size). Note that here this graph has a smaller y-axis range than Figure 10(b) in the paper.

References

- 1. S. P. Thompson, J. E. Parker, J. Marchal, J. Potter, A. Birt, F. Yuan, R. D. Fearn, A. R. Lennie, S. R. Street and C. C. Tang, *J. Synchrotron Rad.*, 2011, **18**, 637-648.
- 2. S. P. Thompson, J. E. Parker, J. Potter, T. P. Hill, A. Birt, T. M. Cobb, F. Yuan and C. C. Tang, *Rev. Sci. Instrum.*, 2009, **80**, 075107.
- 3. A. Coelho, J. Appl. Crystallogr., 2018, **51**, 210-218.
- 4. S. M. Antao, I. Hassan, W. H. Mulder, P. L. Lee and B. H. Toby, *Phys. Chem. Miner.*, 2009, **36**, 159-169.
- 5. H. Chessin, W. C. Hamilton and B. Post, *Acta Cryst.*, 1965, **18**, 689-693.
- 6. D. L. Graf, Am. Mineral., 1961, 46, 1283-1316.
- 7. A. leviņš and M. Straumanis, *Z. Phys.*, 1940, **116**, 194-206.
- 8. M. Merlini, W. A. Crichton, J. Chantel, J. Guignard and S. Poli, *Mineral. Mag.*, 2018, **78**, 225-233.
- 9. W. W. Schmahl and E. Salje, *Phys. Chem. Miner.*, 1989, **16**, 790-798.
- 10. H. E. Swanson and R. K. Fuyat, *National Bureau of Standards*, 1953, **Circular No. 539**, pp. 52-53.
- 11. E. Zolotoyabko, E. N. Caspi, J. S. Fieramosca, R. B. Von Dreele, F. Marin, G. Mor, L. Addadi, S. Weiner and Y. Politi, *Cryst. Growth Des.*, 2010, **10**, 1207-1214.
- 12. M. Albéric, E. N. Caspi, M. Bennet, W. Ajili, N. Nassif, T. Azaïs, A. Berner, P. Fratzl, E. Zolotoyabko, L. Bertinetti and Y. Politi, *Cryst. Growth Des.*, 2018, **18**, 2189-2201.
- 13. S. Frølich, H. O. Sørensen, S. S. Hakim, F. Marin, S. L. S. Stipp and H. Birkedal, *Cryst. Growth Des.*, 2015, **15**, 2761-2767.
- 14. M. A. Hood, H. Leemreize, A. Scheffel and D. Faivre, J. Struct. Biol., 2016, **196**, 147-154.
- 15. B. Pokroy, A. N. Fitch, F. Marin, M. Kapon, N. Adir and E. Zolotoyabko, *J. Struct. Biol.*, 2006, **155**, 96-103.
- 16. S. Kamhi, *Acta Cryst.*, 1963, **16**, 770-772.
- 17. R. Demichelis, P. Raiteri, J. D. Gale and R. Dovesi, *Cryst. Growth Des.*, 2013, **13**, 2247-2251.
- 18. J. Wang, F. Zhang, J. Zhang, R. C. Ewing, U. Becker and Z. Cai, *J. Cryst. Growth*, 2014, **407**, 78-86.