Uranyl ion coordination polymers with the dibenzobarrelene-based *rac*- and (*R*,*R*)-*trans*-9,10-dihydro-9,10-ethanoanthracene-11,12dicarboxylate ligands

Young Hoon Lee,^a Sotaro Kusumoto,^b Youssef Atoini,^c Yoshihiro Koide,^b Shinya Hayami,^{*d} Yang Kim,^{*d} Jack Harrowfield^{*e} and Pierre Thuéry^{*f}

^a Department of Chemistry, University of Ulsan, Tekeunosaneop-ro 55beon-gil, Nam-gu, Ulsan 44610, Republic of Korea ^b Department of Material & Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686,

Japan

^c Technical University of Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany ^d Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. E-mail: <u>hayami@kumamoto-u.ac.jp</u>, <u>ykim@kumamoto-u.ac.jp</u>

^e Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France. E-mail: <u>harrowfield@unistra.fr</u> ^f Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France. E-mail: <u>pierre.thuery@cea.fr</u>

Supporting Information

Synthesis of the ligands

Racemic $11R^*$, $12R^*$ -9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboxylic acid (*rac*deadcH₂).¹ A mixture of anthracene (12.48 g, 70.0 mmol) and fumaric acid (2.71 g, 23.3 mmol) in dry 1,4-dioxane (100 mL) was refluxed for 72 h under a nitrogen atmosphere. After cooling the reaction mixture down to ambient temperature, the solvent was evaporated off under reduced pressure. Saturated aqueous NaHCO₃ solution (50 mL) was added to the residue and the mixture stirred overnight. Unreacted anthracene was removed by extraction with ethyl acetate, the aqueous phase then acidified with 2.0 M HCl (to pH = 1) and the white solid deposited was filtered off, washed with water and dried at 70 °C (6.4 g, 93%). (Note that this procedure is derived from the supplementary information of ref. 1).

(11*R*,12*R*)-(+)-9,10-Dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid (*R*,*R*-deadcH₂) and its enantiomer (*S*,*S*-deadcH₂).² $11R^*$, $12R^*$ -9,10-dihydro-9,10-ethanoanthracene-11,12dicarboxylic acid (6.4 g, 21.75 mmol) and L-proline (2.6 g, 22.58 mmol) were dissolved in methanol (70 mL) at 50 °C and stirred for 4 h at ambient temperature. The reaction mixture was left to cool overnight,

giving a precipitate of needle-like crystals, which were collected by filtration, and the filtrate was stored separately for use in the subsequent step. The first-deposited crystals were washed with cold methanol and recrystallized 3 times from hot methanol to give pure diastereomer, which was added to a mixture of water (50 mL) and diethyl ether (50 mL). The mixture was stirred for 2 h at ambient temperature, the phases separated and the aqueous layer further extracted with diethyl ether (30 mL × 3). The combined ethereal layer was washed with brine (20 mL) before drying over MgSO₄. The solvent was evaporated under reduced pressure and the residue dried under vacuum to give optically pure (11S,12S)-(-)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid as a white powder (1.4 g, 22%). The filtrate stored in the previous step was slowly evaporated at ambient temperature to produce block-like crystals, which were filtered off and washed with cold methanol before their dissolution in a mixture of water (50 mL) and diethyl ether (50 mL). The mixture was stirred for 2 hours , the phases separated and the aqueous layer further extracted with diethyl ether (30 mL × 3). The combined ethereal extracts were washed with brine (20 mL) then dried over MgSO₄. The solvent was evaporated and the aqueous layer further extracted with diethyl ether (30 mL × 3). The combined ethereal extracts were (50 mL) and diethyl ether (50 mL). The mixture was stirred for 2 hours , the phases separated and the aqueous layer further extracted with diethyl ether (30 mL × 3). The combined ethereal extracts were washed with brine (20 mL) then dried over MgSO₄. The solvent was evaporated under reduced pressure and the residue dried under vacuum to give (11R,12R)-(+)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid (1.7 g, 27%).

Fig. S1 ¹H NMR spectrum of 9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid in DMSO-d₆ (* from CD₃SOCD₂H and \dagger from water).

Fig. S2 Emission spectrum of complex 3 in the crystalline state upon excitation at 420 nm.

Table S1 Selected dihedral angles in the dicarboxylate motif (°) and intercarboxylic/ate C···C separation (Å) in complexes 1-8 and in various deadcH_n species.

	C-C-C-C	H–C–C–H	$(O_2)C-C-C-C(O_2)$	0 ₂ C…CO ₂
1	4.4	133.4	99.8	3.445(6)
2	2.5	134.2/126.5	100.9/117.6	3.468(3)/ 3.713(4)
3	4.0/7.1	134.4/134.9	99.2/100.0	3.46(2)
4	7.0	128.8/131.9	110.8/105.9	3.673(7)/3.468(7)
5	3.6	132.9	101.1	3.456(9)
6	5.5	137.7	127.0	3.694(3)
7	3.2/5.9	120.3/129.6	120.8/111.2	3.672(5)/3.575(7)
8	9.0/6.2	137.7/132.3	97.8/109.0	3.478(3)/3.618(4)
Model Chem3D	3.3	129.4	106.2	3.523
Complexes from the CSD ^a	0.1–13.7	117.8–144.2	88.3–117.8	3.340-3.623

^a Cambridge Structural Database, ver. 5.44. CCDC numbers 908951, 908955, 1168948, 1887850, 1880177, 1253506–1253508, 1261319, 2077286, 2150101–2150279, and 2210049–2211198.

References

- 1. A. B. Naidu, E. A. Jaseer and G. Sekar, J. Org. Chem., 2009, 74, 3675.
- 2. C. R. Ramanathan and M. Periasamy, Tetrahedron Asymmetry, 1998, 9, 2651.