## **Electronic Supporting Information**

## Effects on the magnetic interaction caused by molecular recognition in complexes of 1,2-azole-based oxamate and [Cu(bpca)]<sup>+</sup> units

Willian X. C. Oliveira,\*<sup>a</sup> Carlos B. Pinheiro,<sup>b</sup> Yves Journaux,<sup>c</sup> Miguel Julve,<sup>d</sup> Cynthia L. M. Pereira\*<sup>a</sup>

a. Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais. Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil;

b. Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais. Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil;

c. Sorbonne Universités UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, Paris, France.

d. Instituto de Ciencia Molecular, Universitat de València, C/ Catedrático José Beltrán 2,
46980 Paterna, Valencia, Spain.

\* Corresponding authors: wxcoliveira@ufmg.br; cynthialopes@ufmg.br



Figure S1. Infrared spectrum for 1 as a KBr disk.



Figure S2. Infrared spectrum for 3 as a KBr disk.



Figure S3. Infrared spectrum for 4 recorded on an ATR equipment.



Figure S4. Infrared spectrum of 5 as a KBr disk.



Figure S5. Thermal analysis for 1 under  $N_2$  flow. The black line refers to the mass loss, whereas the red one is the DTA curve.



Figure S6. Thermal analysis for 3 under  $N_2$  flow. The black line refers to the mass loss, whereas the red one is the DTA curve.



Figure S7. Thermal analysis for 4 under  $N_2$  flow. The black line refers to the mass loss whereas the red one is the DTA curve.



Figure S8. Thermal analysis for 5 under  $N_2$  flow. The black line refers to the mass loss, whereas the red one is the DTA curve.



**Figure S9.** X-ray powder diffraction for **1** and comparison with the calculated pattern from its single crystal structure.



**Figure S10.** X-ray powder diffraction for **3** and comparison with the calculated pattern from its single crystal structure.



**Figure S11.** X-ray powder diffraction for **4** and comparison with the calculated pattern from its single crystal structure.



(c)

Figure S12 - (a) Single crystal of 1 and (b) single crystal of 4. (c) Single crystals of 4 and 2 together without separation from their synthesis, showcasing the low yield of 2 (red circles).



Figure S13. Crystal packing of 1 focusing on the double strain interchain hydrogen bonds.



Figure S14. Crystal packing of 2 focusing on the hydrogen bond net between the coordination polymers and the crystallization solvent molecules.



**Figure S15.** Crystal packing of **2** focusing on the different interchain hydrogen bonds and C–H··· $\pi$  interactions.



Figure S16. Crystal packing of 3 focusing on the interchain hydrogen bonds.



**Figure S17.** Crystal packing of **3** focusing on the interactions involving the coordination polymers and the solvent molecules.



Figure S18. Crystal packing of 4 featuring the interchain hydrogen bonds and  $\pi$ - $\pi$  stacking.

|                       |                 | 1            |             |                        |                 | 2          |             |
|-----------------------|-----------------|--------------|-------------|------------------------|-----------------|------------|-------------|
| Bond leng             | th Cu–L/Å       | Bond angle l | L-Cul-L'/º  | Bond leng              | th Cu–L/Å       | Bond angle | L-Cul-L'/º  |
| Cu1–N2                | 2.207 (3)       | N2-Cu1-N4    | 94.09 (13)  | Cu1–N2                 | 1.987 (2)       | N2-Cu1-N4  | 96.42 (10)  |
| Cu1–N4                | 2.024 (3)       | N2-Cu1-N25   | 98.16 (13)  | Cu1–N4                 | 2.018 (2)       | N2–Cu1–N5  | 170.79 (10) |
| Cu1–N5                | 1.956 (3)       | N2–Cu1–N6    | 95.31 (13)  | Cu1–N5                 | 1.935 (2)       | N2–Cu1–N6  | 99.15 (10)  |
| Cu1–N6                | 2.036 (3)       | N2–Cu1–O1    | 106.06 (12) | Cu1–N6                 | 1.997 (2)       | N2–Cu1–O1  | 85.45 (9)   |
| Cu1–O1                | 1.944 (3)       | N4–Cu1–N5    | 81.20 (13)  | Cu1–O1                 | 2.267 (2)       | N4–Cu1–N5  | 81.63 (10)  |
| Shortest Cu…          | Cu distance / Å | N4–Cu1–N6    | 160.91 (13) | Shortest Cu…           | Cu distance / Å | N4–Cu1–N6  | 162.90 (10) |
| Cu1…Cu1 <sup>vi</sup> | 4.366(1)        | N4–Cu1–O1    | 94.27 (12)  | Cu1…Cu1 <sup>iii</sup> | 5.1663(8)       | N4–Cu1–O1  | 98.55 (10)  |
| Shortest intrac       | chain Cu…Cu     | N5–Cu1–N6    | 81.05 (13)  | Shortest intrac        | chain Cu…Cu     | N5–Cu1–N6  | 81.87 (10)  |
| distance/Å            |                 |              |             | distance/Å             |                 |            |             |
| $Cu1{\cdots}Cu1^i$    | 13.672(5)       | N5-Cu1-O1    | 155.64 (12) | $Cu1\cdots Cu1^i$      | 13.884(1)       | N5–Cu1–O1  | 103.73 (9)  |
|                       |                 | N6-Cu1-O1    | 99.02 (13)  |                        |                 | N6-Cu1-O1  | 89.72 (10)  |

 Table S1. Main bond lengths and angles for 1 and 2.

•

Symmetry codes. 1: (i) = x, y, 1+z; (vi) = 2-x, 2-y, -z. 2: (i) = -1+x, y, -1+z; (iii) = 1-x, -y, -z.

|                      |                | 1 .1 1 1          | 6 9 14                                         |                        |               |            |             |
|----------------------|----------------|-------------------|------------------------------------------------|------------------------|---------------|------------|-------------|
| I able               | S2. Main bond  | lengths and angle | is for $\boldsymbol{3}$ and $\boldsymbol{4}$ . |                        |               |            |             |
|                      |                | 3                 |                                                |                        |               | 4          |             |
| Bond len             | gth Cu–L/Å     | Bond angle I      | L-Cul-L'/º                                     | Bond leng              | gth Cu−L/Å    | Bond angle | L–Cul–L'/º  |
| Cu1–N7               | 2.020 (4)      | N7–Cu1–N8         | 82.03 (17)                                     | Cu1–N4                 | 2.013 (4)     | N4–Cu1–N5  | 81.51 (15)  |
| Cu1–N8               | 1.939 (4)      | N7–Cu1–N9         | 163.68 (17)                                    | Cu1–N5                 | 1.934 (3)     | N4–Cu1–N6  | 162.31 (14) |
| Cu1–N9               | 2.002 (4)      | N7–Cu1– O1        | 95.28 (14)                                     | Cu1–N6                 | 2.017 (4)     | N4–Cu1–O1  | 98.07 (14)  |
| Cu1–O1               | 1.973 (3)      | N7–Cu1–O3         | 93.86 (13)                                     | Cu1–O1                 | 1.983 (3)     | N4–Cu1–O3  | 94.56 (13)  |
| Cu1–O3               | 2.399 (3)      | N7–Cu1–O4         | 92.31 (15)                                     | Cu1–O3                 | 2.277 (2)     | N5–Cu1–N6  | 81.93 (14)  |
| Cu1–O4               | 2.370 (3)      | N8–Cu1–N9         | 82.20 (18)                                     | Cu2–N7                 | 2.001 (3)     | N5–Cu1–O1  | 171.09 (12) |
| Cu2–N2               | 2.241 (3)      | N8–Cu1–O1         | 170.97 (14)                                    | Cu2–N8                 | 1.943 (3)     | N5–Cu1–O3  | 111.37 (12) |
| Cu2-N10              | 2.017 (4)      | N8–Cu1–O3         | 94.98 (13)                                     | Cu2–N9                 | 2.009 (3)     | N6-Cu1-O1  | 97.32 (13)  |
| Cu2-N11              | 1.943 (3)      | N8–Cu1–O4         | 110.01 (14)                                    | Cu2–O2                 | 2.272 (2)     | N6–Cu1–O3  | 97.24 (13)  |
| Cu2–N12              | 2.024 (4)      | N9–Cu1– O1        | 100.94 (16)                                    |                        |               | O1–Cu1–O3  | 77.54 (9)   |
| Cu2–O5               | 1.963 (3)      | N9-Cu1-O3         | 91.67 (13)                                     |                        |               | N2–Cu2–N8  | 97.80 (14)  |
| Shortest Cu.         | ·Cu distance/Å | N9–Cu1–O4         | 89.15 (15)                                     | Shortest Cu            | Cu distance/Å | N2–Cu2–N8  | 156.41 (13) |
| Cu1…Cu2              | 4.624(1)       | O1–Cu1–O3         | 76.54 (11)                                     | Cu1…Cu1 <sup>vii</sup> | 4.8757(7)     | N2-Cu2-N9  | 97.72 (14)  |
| Intrachain           | Cu…Cu          | O1–Cu1–O4         | 78.64 (12)                                     | Intrachain             | Cu…Cu         | N2-Cu2-O2  | 99.04 (11)  |
| distance/Å           |                |                   |                                                | distance/Å             |               |            |             |
| $Cu1\cdots Cu1^v$    | 17.450(1)      | O3–Cu1–O4         | 154.86 (11)                                    | Cu1…Cu2                | 5.7391(7)     | N7–Cu2–N8  | 81.73 (13)  |
| Cu1…Cu2 <sup>v</sup> | 13.375(1)      | N2-Cu2-N10        | 97.92 (14)                                     | $Cu1\cdots Cu1^i$      | 13.719(2)     | N7-Cu2-N9  | 163.29 (13) |
| $Cu2\cdots Cu2^v$    | 17.450(1)      | N2-Cu2-N11        | 103.09 (14)                                    | $Cu2\cdots Cu2^i$      | 13.719(2)     | N7–Cu2–O2  | 92.38 (12)  |
|                      |                | N2-Cu2-N12        | 95.64 (14)                                     | Cu1…Cu2 <sup>i</sup>   | 13.030(2)     | N8-Cu2-O2  | 104.55 (11) |

| N2-Cu2-O5   | 88.46 (13)  | $Cu2\cdots Cu1^i$ | 16.508(2) | N8-Cu2-N9 | 81.58 (13) |
|-------------|-------------|-------------------|-----------|-----------|------------|
| N10-Cu2-N11 | 81.64 (15)  |                   |           | N9-Cu2-O2 | 91.26 (12) |
| N10-Cu2-N12 | 160.42 (15) |                   |           |           |            |
| N10-Cu2-O5  | 96.06 (18)  |                   |           |           |            |
| N11-Cu2-N12 | 81.57 (15)  |                   |           |           |            |
| N11-Cu2-O5  | 168.41 (14) |                   |           |           |            |
| N12-Cu2-O5  | 98.36 (17)  |                   |           |           |            |

Symmetry code: (v) = -1+x, 1+y, z (3); (i) = -1+x, 1+y, z and (vii) = 2-x, 1-y, 1-z (4).

|                      |               | 5            |             |
|----------------------|---------------|--------------|-------------|
| Bond leng            | th Cu−L/Å     | Bond angle I | Cul-L'/º    |
| Cu1–N6               | 2.015 (3)     | N7–Cu1–N6    | 82.65 (13)  |
| Cu1–N7               | 1.928 (3)     | N6–Cu1–N8    | 164.54 (14) |
| Cu1–N8               | 2.003 (3)     | N6Cu1O2      | 95.54 (12)  |
| Cu1–O2               | 1.959 (3)     | N6–Cu1–O3    | 93.01 (12)  |
| Cu1–O3               | 2.238 (3)     | N7–Cu1–N8    | 82.84 (13)  |
| Cu2–N1               | 1.971 (3)     | N7–Cu1–O2    | 169.54 (14) |
| Cu2–N3               | 2.020 (3)     | N7–Cu1–O3    | 111.40 (12) |
| Cu2–N4               | 1.929 (3)     | N8–Cu1–O2    | 97.78 (12)  |
| Cu2–N5               | 2.011 (4)     | N8–Cu1–O3    | 97.20 (12)  |
| Cu2–O1               | 2.225 (3)     | O2–Cu1–O3    | 78.94 (10)  |
| Intramolecular       | CuCu          | N1-Cu2-N3    | 98.77 (13)  |
| distance/Å           |               |              |             |
| Cu1…Cu2              | 5.456(9)      | N1-Cu2-N4    | 170.19 (15) |
| Shortest intrame     | olecular CuCu | N1–Cu2–N5    | 95.43 (13)  |
| distance/Å           |               |              |             |
| Cu2…Cu1 <sup>i</sup> | 3.7987(9)     | N1-Cu2-O1    | 80.39 (12)  |
|                      |               | N3–Cu2–N4    | 82.50 (14)  |
|                      |               | N3–Cu2–N5    | 164.88 (14) |
|                      |               | N3-Cu2-O1    | 92.80 (13)  |
|                      |               | N4–Cu2–N5    | 82.63 (14)  |
|                      |               | N4Cu2O1      | 109.31 (13) |
|                      |               | N5-Cu2-O1    | 94.69 (13)  |
| G                    | 1 (1)         | 1 0 1        |             |

Table S3. Main bond lengths and angles for 5

Symmetry code: (i) = 1-x, 2-y, 1-z.

| $D-\mathrm{H}\cdots A$             | D–H/Å    | H…A/Å    | $D \cdots A/\text{\AA}$ | <i>D</i> –H··· <i>A</i> /° |
|------------------------------------|----------|----------|-------------------------|----------------------------|
| N3–H3…O2                           | 0.86     | 2.04     | 2.785 (4)               | 144                        |
| N3–H3…O7                           | 0.86     | 2.56     | 3.162 (6)               | 128                        |
| $N1 – H1 \cdots O5^{iii}$          | 0.86     | 2.30     | 3.068 (4)               | 149                        |
| O7−H7 <i>A</i> …O6                 | 0.90 (1) | 1.97 (1) | 2.865 (5)               | 177 (4)                    |
| O7−H7 <i>B</i> ···O8 <sup>iv</sup> | 0.90 (1) | 2.03 (3) | 2.799 (6)               | 143 (5)                    |
| O6−H6 <i>A</i> …O5 <sup>v</sup>    | 0.90 (1) | 1.92 (1) | 2.807 (4)               | 168 (4)                    |
| O6−H6 <i>B</i> ···O3               | 0.90 (1) | 2.06 (3) | 2.882 (4)               | 152 (5)                    |
| O8−H8A…O9Aª                        | 0.90 (1) | 2.03 (5) | 2.797 (9)               | 143 (6)                    |
| O8–H8 <sup>A…O9B</sup> b           | 0.90 (1) | 2.49 (2) | 3.389 (17)              | 175 (7)                    |
| O8−H8 <i>B</i> …O7 <sup>vi</sup>   | 0.90 (1) | 1.93 (2) | 2.824 (7)               | 170 (7)                    |

Table S4. Hydrogen bonds for 1.

Symmetry code: (iii) -*x*+2, -*y*+2, -*z*; (iv) *x*-1, *y*, *z*; (v) *x*, *y*-1, *z*; (vi) -*x*+2, -*y*+1, -*z*+1.

Table S5. Hydrogen bonds for 2.

| $D-\mathrm{H}\cdots A$ | D–H/Å | H…A/Å | $D \cdots A/\text{\AA}$ | D–H··· $A$ /° |
|------------------------|-------|-------|-------------------------|---------------|
| N3–H3…O6               | 0.86  | 2.20  | 2.883 (4)               | 136           |
| N3–H3…O1               | 0.86  | 2.16  | 2.729 (3)               | 124           |
| O7−H7 <i>B</i> ····O5  | 0.82  | 2.12  | 2.839 (4)               | 147           |
| O6−H6 <i>A</i> …O2     | 0.82  | 1.96  | 2.749 (4)               | 161           |

## Table S6. Hydrogen bonds for 3.

| $D-\mathrm{H}\cdots A$    | <i>D</i> –H/Å | H…A∕Å | $D \cdots A/\text{\AA}$ | D–H··· $A$ /° |
|---------------------------|---------------|-------|-------------------------|---------------|
| N6–H6A···O7 <sup>iv</sup> | 0.88          | 1.97  | 2.796 (5)               | 156           |
| N3–H6…O9 <sup>v</sup>     | 0.88          | 2.27  | 2.865 (5)               | 125           |
| $N3-H6\cdots O10^{v}$     | 0.88          | 2.00  | 2.800 (5)               | 150           |
| N4–H10…O1                 | 0.88          | 2.34  | 3.213 (5)               | 172           |

Symmetry code: (iv) *x*, -*y*+2, *z*+1/2; (v) -*x*, -*y*+2, -*z*.

| $D-\mathrm{H}\cdots A$          | D–H/Å | H…A/Å | $D \cdots A/\text{\AA}$ | D–H··· $A$ /° |
|---------------------------------|-------|-------|-------------------------|---------------|
| $N3\text{-}H3\cdots\text{O}1^i$ | 0.86  | 2.04  | 2.851 (4)               | 156           |
| $N1 – H1 \cdots O5^v$           | 0.86  | 2.53  | 3.311 (4)               | 152           |
| $N1 – H1 \cdots O4^v$           | 0.86  | 2.51  | 3.127 (4)               | 130           |
| O12–H12A…O6 <sup>vi</sup>       | 0.82  | 1.97  | 2.778 (6)               | 168           |
| $O10 – H10 \cdots O4^v$         | 0.82  | 2.06  | 2.874 (6)               | 174           |
|                                 |       |       |                         |               |

**Table S7.** Hydrogen bond for 4.

Symmetry code: (i) *x*-1, *y*+1, *z*; (v) -*x*+1, -*y*+1, -*z*+2; (vi) -*x*+2, -*y*+1, -*z*+1.

Coordination Deviation from Shapes<sup>a</sup> Compound Atom TBPY-5 SPY-5 OC-6 TPR-6 Number Cu1 5 1 8.212 7.917 2 5 8.942 Cu1 12.715 49.086 3 Cu1 5 47.871 Cu2 6 19.773 18.618 4 5 8.056 Cu1 11.338 Cu2 5 8.535 7.432 5 5 Cu1 13.664 8.581 5 8.968 Cu2 13.940

Table S8. SHAPE calculations for metal atoms

<sup>a</sup>Code associations: TBPY-5 = Trigonal bipyramid ( $D_{3h}$ ), SPY-5 = Spherical square pyramid ( $C_{4v}$ ), OC-6 = Octahedron ( $O_h$ ) and TPR-6 = Trigonal prism ( $D_{3h}$ ).