Structure-induced diverse selective dyes adsorption and Cr(VI) photoreduction for two new polyoxometalatebased metal-viologen complexes

Xiuli Wang,*‡ Lin Yang,‡ Zhong Zhang

‡Xiuli Wang and Lin Yang contributed equally to this work and should be considered as co-first

authors

College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.

Corresponding Authors: Email: wangxiuli@bhu.edu.cn

Calculation of Capacity

Equation 1 was used to calculate the removal percentage of the dye.

$$R\% = \left[\frac{A_0 - A_t}{A_t}\right] \times 100 \ (1)$$

 A_0 is the absorbance of the dye solution before the adsorption process; and A_t is the absorbance of the dye solution after the adsorption process.

Complex	BHU-3	BHU-4
Formula	$C_{72}H_{75}CuN_8O_{95}P_2W_{24}$	$C_{54}H_{55}Co_3N_6O_{57}W_{12}$
Formula weight	7110.28	4083.03
crystal system	Triclinic	Orthorhombic
space group	P_{-1}	$Pna2_1$
a/Å	13.0872(6)	14.5892(9)
b/Å	13.6972(7)	21.9646(15)
c/Å	19.4602(9)	26.1741(17)
$\alpha/^{\circ}$	95.4120(10)	90
$eta /^{\circ}$	106.1440(10)	90
y/°	93.0910(10)	90
<i>V</i> (Å ³)	3324.2(3)	8387.4(9)
Ζ	1	2
$D_c (\mathrm{g}\mathrm{cm}^{-3})$	3.515	3.161
$\mu~(\mathrm{mm}^{-1})$	20.949	17.058
F (000)	3117.0	7180.0
Reflection collected	24689	46919
Data/restraints/parameters	16325/23/900	14377/1517/1109

Table S1 Crystallographic data for BHU-3 and BHU-4

Goodness-of-fit on F ²	1.016	1.014		
<i>R</i> [I>=2σ (I)]	$R_1 = 0.0454,$ $wR_2 = 0.1089$	$R_1 = 0.0616,$ $wR_2 = 0.1242$		
R [all data]	$R_1 = 0.0781,$ $wR_2 = 0.1224$	$R_1 = 0.1123,$ $wR_2 = 0.1468$		
$R_{I} = \Sigma F_{o} - F_{c} / \Sigma F_{o} , wR_{2} = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]^{1/2}$				

Table S2 Partial bond distances (Å) and angles (°) for BHU-3 and BHU-4

BHU-3						
Cu(1)–N(1)	2.003(11)	N(1)#1-Cu(1)-N(3)	90.6(5)			
Cu(1)–N(3)	2.020(12)	N(1)#-Cu(1)-N(3)#1	89.4(5)			
N(3)#1-Cu(1)-N(3)	180.0(4)	N(1)-Cu(1)-N(3)#1	90.6(5)			
N(1)-Cu(1)-N(3)	89.4(5)	N(1)#1-Cu(1)-N(1)	180.0			
	Symmetry co	ode: #1 2- <i>x</i> , 1- <i>y</i> , - <i>z</i>				
	В	BHU-4				
Co(1)–O(1)	2.13(3)	N(1)-Co(1)-O(2W)	89.2(12)			
Co(1)–O(2)	2.14(3)	N(3)-Co(1)-O(1)	98.2(13)			
Co(1)–N(1)	2.10(2)	N(3)-Co(1)-O(2)	159.7(13)			
Co(1)–N(3)	2.05(4)	N(3)-Co(1)-N(1)	104.7(12)			
Co(1)–O(1W)	2.17(3)	N(3)-Co(1)-O(1W)	94.5(13)			
Co(1)–O(2W)	2.17(3)	N(3)-Co(1)-O(2W)	84.3(14)			
Co(2)–O(7)	2.10(3)	O(30)#1-Co(2)-O(7)	173.4(11)			
Co(2)-O(30)#1	2.04(3)	O(30)#1–Co(2)–O(4W)	87.5(14)			
Co(2)–N(5)	2.120(18)	O(30)#1–Co(2)–O(5W)	92.6(12)			
Co(2)–O(3W)	2.04(3)	O(30)#1-Co(2)-N(5)	93.3(11)			
Co(2)–O(4W)	2.12(3)	O(7)–Co(2)–O(4W)	85.9(13)			
Co(2)–O(5W)	2.11(3)	O(7)–Co(2)–O(5W)	87.2(12)			
O(2)–Co(1)–O(1W)	90.3(12)	O(7)–Co(2)–N(5)	93.3(11)			
O(2)–Co(1)–O(2W)	90.4(12)	O(4W)–Co(2)–N(5)	179.1(14)			
O(1W)–Co(1)–O(2W)	178.5(12)	O(5W)–Co(2)–O(4W)	91.8(14)			

O(1)–Co(1)–O(2)	62.1(11)	O(5W)–Co(2)–N(5)	88.6(12)		
O(1)–Co(1)–O(1W)	89.9(11)	O(3W)–Co(2)–O(30)#1	85.8(13)		
O(1)–Co(1)–O(2W)	89.3(11)	O(3W)–Co(2)–O(7)	94.3(14)		
N(1)-Co(1)-O(2)	94.8(11)	O(3W)–Co(2)–O(4W)	87.0(15)		
N(1)-Co(1)-O(1W)	92.0(11)	O(3W)–Co(2)–O(5W)	178.0(14)		
N(1)-Co(1)-O(1)	156.8(11)	O(3W)–Co(2)–N(5)	92.6(13)		
^{#1} - <i>x</i> , 1- <i>y</i> , -1/2+ <i>z</i>					

Table S3 BVS calculations of Cu and Co atoms in BHU-3 and BHU-4

	BHU-3	BH	[U-4	
Cu1	1.41	Col	1.77	
		Co2	1.99	
		Co3	2.50	

Table 5 Sciected Hydrogen boliding distance (1) for bire 5 and bire 1					
BHU-3					
D-H···A	D-H	Н…А	D····A	D-H…A	symmetry code
O1W-	0.85	2 1 9	2.02(2)	171	× 1 + 1 =
H1WA…O16	0.85	2.10	5.02(5)	1/1	x, T + y, z
O2-H2…O1	0.82	2.04	2.854(19)	176	2-x, 3-y, 1-z
O1W-H1WB…O1	0.85	2.22	3.07(3)	172	1-x, 2-y, 1-z
O2W-	0.95	2 00	2.020(15)	170	1 1 1
H2WB…O48	0.85	2.09	2.930(13)	109	<i>I-x, I-y, I-z</i>
		B	HU-4		
D-H···A	D-H	Н…А	D…A	D-H···A	symmetry code
O6W-H6WA…O5	0.85	1.98	2.61(5)	130	1/2-x, 1/2+y, -1/2+z
O6W-	0.85	2 1 1	2.02(4)	164	$1/2 \pm r = 1/2$ m π
H6WB…O42	0.85	2.11	2.93(4)	104	$1/2 \pm x, 1/2 - y, 2$

Table S4 Selected hydrogen-bonding distance (Å) for BHU-3 and BHU-4

Table S5 Comparison of the adsorption rates of various adsorbents for MB

Compound	Time	Adsorptio	Ref
		n rate	
$[Co(HL)(H_2O)_2(CrMo_6(OH)_6O_{18})] \bullet 5H_2O$	150 min	96.09%	[1]
$H_2[Cu_2OL_3(H_2O)_2][Ce(L)(H_2O)_3(PW_{11}O_{39})] \cdot 17H_2$	240 min	91.7%	[2]

0			
(TBA) ₃ POM-1	240 min	97.62%	[3]
$(Bpyen)_2(Mo_8O_{26})] \cdot 2H_2O$	150 min	87.3%	[4]
$\{ [Cu \cdot L2' \cdot (4,4' - bpy)] \cdot [Cu \cdot L2' \cdot (\beta - Mo_8O_{26})] \cdot 4H_2O \} n$	285 min	54.1%	[5]
{([Cu ^{II} (2,2-	120 min	92.1%	[6]
$bpy)_{2}]_{2}[PMo^{VI}_{8}V^{V}_{2}V^{IV}_{2}O_{40}(V^{IV}O)_{2}])[Cu^{I}(2,2)^{-1}]$			
bpy)]·2H ₂ O			
BHU-3	120 min	97%	This
BHU-4	1 min	97%	work

 Table S6 The reduction rate of BHU-3 and BHU-4 compared with other works

Compound	Time	Reduction	Ref
		rate	
${Cu_2(OH)(Ptep)_2[H(\beta-Mo_8O_{26})]} \cdot 2H_2O$	40 min	52.9%	[7]
[Cu(bimeb)(H ₂ O) ₂][(β-Mo ₈ O ₂₆) _{0.5}]	40 min	54.4%	
$(H_2L_1)_2(H_2L_2)_2[Na(H_2O)]_2[Fe(H_2O)_2]$	120 min	86%	[8]
${M[P_4Mo_6O_{31}H_5]_2} \cdot 7H_2O$			
$(H_2L_1)_2(H_2L_2)_2[Na(H_2O)]_2[Co(H_2O)_2]$	120 min	82%	
${M[P_4Mo_6O_{31}H_5]_2}$ ·7H ₂ O			
$(H_2L_1)_2(H_2L_2)_2[Na(H_2O)]_2[Mn(H_2O)_2]$	120 min	76%	
$\{M[P_4Mo_6O_{31}H_5]2\} \cdot 7H_2O$			
$(H_{2}L_{1})_{2}(H_{2}L_{2})_{3}[Na(H_{2}O)]_{2}[Zn(H_{2}O)_{2}]$	120 min	72%	
$\{M[P_4Mo_2O_2, H_5]_2\}$; 7H ₂ O			
$\frac{(1411410605111512)}{[Cu_2(Cmt)_2(OH)Cl(\beta-Mo_8O_{26})_{0.5}]}$	60 min	54.3%	[9]
[Cu(H ₂ O) ₃ (H _{3/2} Tpm) ₂](HTpm)(PMo ₁₂ O ₄₀)	60 min	69.5%	
2 [.] 4H ₂ O			
$[Cu_3Cl_2(H_2Tpm)_2(HTpm)_4(PMo_{12}O_{40})_4] \cdot 2$	60 min	56.9%	
6H ₂ O			
$[Co_3(HTpm)_6(H_2O)_2(Mo_{13}O_{42})_2] \cdot 21H_2O$	60 min	66.4%	
{Ni2(DEP)2(H2O)6[H2(TeMo6O24)]}	60 min	52.3%	[10]
${Zn_2(DEP)_2(H_2O)_6[H_2(TeMo_6O_{24})]}$	60 min	53.2%	
$\{Co(DEP)_2(H_2O)_2[H_2(\gamma -$	60 min	54.8%	
$Mo_8O_{26})]$ ·11H ₂ O			
$\{Cu(DEP)[(H_2\beta-Mo_8O_{26})_{0.5}]\}$	60 min	60.6%	
$[Cu_{6}(DTP)_{5}(OH)_{2}(H_{2}O)_{6}(PW^{VI}_{10}W^{V}_{2}O_{40})_{2}$	60 min	51.7%	
]			
$(H_2DBQ)[Fe(H_2O)_3]_2\{Fe[P_4Mo_6O_{31}H_7]_2\}\cdot$	120 min	91%	[11]
7H ₂ O			
$(H_2DBQ)_2(H_2DBP)[Fe(H_2O)_4]{Fe[P_4Mo_6]}$	120 min	86%	

$O_{31}H_7]_2\} \cdot 4H_2O$			
$(H_2DBP)_2\{Fe[P_4Mo_6O_{31}H_9]_2\}\cdot 10H_2O$	120 min	81%	
(FPDS) ₃ [PW ₁₂ O ₄₀]	120 min	50%	[12]
(FPDS) ₄ [SiMo ₁₂ O ₄₀]	120 min	33%	
(FPDS) ₄ [SiW ₁₂ O ₄₀]	120 min	30%	
$(H_2bpe)_3[Zn(H_2PO_4)][Zn(bpe)(H_2O)_2]H\{Z$	20 min	79%	[13]
$n[P_4Mo_6O_{31}H_6]_2\} \cdot 6H_2O$			
$Na_6[H_2bz]_2[ZnNa_4(H_2O)_5]\{Zn$	20 min	70%	
$[P_4Mo_6O_{31}H_3]_2\} \cdot 2H_2O$			
$(H_2mbpy)\{[Zn(mbpy)(H_2O)]_2[Zn(H_2O)]_2\}$	20 min	64%	
${Zn[P_4Mo_6O_{31}H_6]_2} \cdot 10H_2O$			
$(H_2bpp)_2[\{Na_4(H_2O)_5\}\{Co_{0.8}Cd_{0.2}(H_2O)_2\}]$	180 min	74%	[14]
${Cd[Mo_6O_{12}(OH)_3(H_2PO_4)(HPO_4)(PO_4)_2]}$			
2}]·2H ₂ O			
$(H_2bpp)_3[Zn_2{Cd[Mo_6O_{12}(OH)_3(HPO_4)_3(P)]}$	180 min	68%	
$O_4)]_2\}].6H_2O$			
$[(H_2bpp)_3(bpp)_2][{Al_2(H_2O)_4}{Cd[Mo_6O_1]}$	180 min	55%	
$_{2}(OH)_{3}(H_{2}PO_{4})_{2}(HPO_{4})(PO_{4})]_{2}_{2}] \cdot 9H_{2}O$			
BHU-3	90 min	91.94%	This work
BHU-4	90 min	63.09%	

Fig. S2 The 3-D stacking of BHU-3.

Fig. S3 The pictures of BHU-3 and BHU-4 under optical microscope.

Fig. S4 The IR spectra of BHU-3 and BHU-4.

Fig. S5 The PXRD patterns of BHU-3 and BHU-4.

Fig. S6 The TGA curves of BHU-3 and BHU-4.

The TGA curve of **BHU-3** shows that the crystal structure can be maintained before 321 °C, and the continuous weight loss between 30 and 321 °C is attributed to the removal of lattice waters (cal. 1.77% *vs.* observed 1.96%) (Fig. S5a). The TGA curve of **BHU-4** is similar to that of **BHU-3**, the crystal structure remains stable before 399 °C, and the continuous weight loss between 30 and 399 °C is attributed to the removal of lattice waters and coordination waters (cal. 4.93% vs observed 4.58%).

Fig. S7 The adsorption of (a-c) BHU-3 and (d-f) BHU-4 toward RhB, MO and AO.

Fig. S8 The UV-vis spectra of the mixed dye solutions without catalyst.

Fig. S9 The adsorption rates of BHU-3 and BHU-4 toward MB with 3 cycles.

Fig. S10 The photographs of BHU-3 and BHU-4 before and after MB adsorption.

Fig. S11 The PXRD patterns of BHU-3 and BHU-4 toward MB adsorption before

Fig. S12 Photocatalytic reduction of Cr(VI) with BHU-3 or BHU-4 in (a-b) methanol; (c-d) ethanol; (e-f) isopropanol.

Fig. S13 Photocatalytic reduction of Cr(VI) with BHU-1 in isopropanol.

Fig. S14 The Cr(VI) photoreduction rates of BHU-3 before and after 3 cycles.

Fig. S15 The PXRD spectra of BHU-3 toward Cr(VI) photoreduction before and after

3 cycles.

Fig. S16 The VB-XPS and MS of BHU-4.

References

[1] Y. Zhang, X. Wang, Y. Wang, L. Li, N. Xu and X. L. Wang, *Inorg. Chem. Front.*, 2021, 8, 4458-4466.

[2] R. T. Zhang, H. P. Xiao, Z. Li, M. Wang, Y. F. Xie, Y. D. Ye, X. X. Li and S. T. Zheng, CrystEngComm, 2021, 23, 2973-2981.

[3] L. Qin, Y. Pan, F.Q. Xie, L. Yu, R. R. Huai, L. Yang, D. P. Zhang, Z. Zhou, *Inorg. Chem. Commun.*, 2021, **133**, 108988.

[4] J. H. Li, X. L. Wang, G. Song, H. Y. Lin, X. Wang and G. C. Liu, Dalton Trans., 2020, 49,

1265-1275.

[5] Y. Y. Li, Y. Q. Lu, X. Y. Qiao, W. M. Huang, Y. Y. Niu, *Inorg. Chem. Commun.*, 2020, **118**, 108002.

[6] Y. B. Liu, W. T. Zhao, J. J. Zheng, H. Wang, X. B. Cui and Y. D. Chi, *Molecules*, 2023, 28, 4706.

[7] J. Ying, C. X. Sun, L. Jin, A. X. Tian and X. L. Wang, CrystEngComm, 2021, 23, 5385-5396.

[8] H. X. Bi, X. Y. Yin, X. J. Zhang, Y. Y. Ma and Z. G. Han, *CrystEngComm*, 2022, 24, 1002-1009.

[9] S. F. Ma, J. Ying, Y. P. Zhang, A. X. Tian, CrystEngComm, 2022, 24, 2891-2902.

[10] X. Xu, Y. P. Zhang, J. Ying, L. Jin, A. X. Tian, X. L. Wang, CrystEngComm, 2022, 24, 1267-1278.

[11] H. X. Bi, X. Y. Yin, J. Y. He, H. Song, S. J. Lu, Y. Y. Ma, Z. G. Han, Rare Met., 2023, 42, 3638-3650.

[12] M. Singh, A. Yadav, C. P. Pradeep, Langmuir 2022, 38, 16034-16045.

[13] Y. Q. Zhang, L. Hou, H. X. Bi, X. X. Fang, Y. Y. Ma, Z. G. Han, chemistry-an Asian journal, 2021, 16, 1584-1591.

[14] X. R. Tian, Y. Q. Zhang, Y. Y. Ma, Q. Zhao, Z. G. Han, Catal. Sci. Technol., 2020, 10, 2593-2601.