Electronic supplementary information

Proton transport in oxalate compounds of iron(III) containing

(alkyl)ammonium cations: The influence of the density of

hydrogen bonds on conductivity

Ana Lozančić,^a Sanja Burazer,^a Sanja Renka,^a Krešimir Molčanov,^a Lidija Molčanov,^a and

Marijana Jurić^{a, *}

^a Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

Fig. S1 ORTEP-3 drawing of a formula unit of compound $(NH_4)_2[Fe(H_2O)CI_3(C_2O_4)] \cdot H_2O$ (1) with atom numbering scheme. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Table S1 Selected distances (Å) and angles (°) for the coordination sphere of the iron(III) in compounds $(NH_4)_2[Fe(H_2O)CI_3(C_2O_4)] \cdot H_2O$ (**1**), $\{[NH(CH_3)_2(C_2H_5)][FeCI_2(C_2O_4)] \cdot H_2O\}_n$ (**2**) and $\{[N(CH_3)(C_2H_5)_3][FeCI_2(C_2O_4)]\}_n$ (**3**)

1		2		3	
Fe1-01	2.045(4)	Fe1–01	2.139(3)	Fe1–O2	2.050(8)
Fe1–O1 ^a	2.045(4)	Fe1–O2	2.067(3)	Fe1–O4	2.061(7)
Fe1-03	2.102(5)	Fe1–O3	2.154(3)	Fe1–O3	2.148(8)
Fe1–Cl1 ^a	2.3280(15)	Fe1–O4 ⁱ	2.039(3)	Fe1–O1	2.158(7)
Fe1–Cl1	2.3280(15)	Fe1–Cl1	2.2424(10)	Fe1–Cl2	2.243(5)
Fe1–Cl2	2.3407(18)	Fe1–Cl2	2.2525(10)	Fe1–Cl1	2.243(4)
01–Fe1–O1 ^a	78.71(16)	01–Fe1–O2	78.01(11)	O2–Fe1–O4	158.3(3)
01–Fe1–O3	87.03(17)	01–Fe1–O3	80.12(11)	O2–Fe1–O3	86.0(3)
O1–Fe1–Cl1 ^a	167.96(12)	O2–Fe1–O4 ^b	86.41(12)	02–Fe1–01	78.2(3)
O1–Fe1–Cl1	90.34(11)	01–Fe1–O4 ^b	84.64(11)	O2–Fe1–Cl2	100.6(3)
O1–Fe1–Cl2	93.28(10)	O2–Fe1–O3	158.78(11)	O2–Fe1–Cl1	93.5(3)
01 ^a -Fe1-03	87.03(17)	O3–Fe1–O4 ^b	78.51(11)	04–Fe1–O3	77.8(3)
O1 ^a -Fe1-Cl1 ^a	90.34(11)	O1–Fe1–Cl1	89.44(9)	04–Fe1–01	84.8(3)
O1 ^a –Fe1–Cl1	167.96(12)	O1–Fe1–Cl2	167.97(9)	O4–Fe1–Cl2	93.2(2)
O1 ^a –Fe1–Cl2	93.28(10)	O2–Fe1–Cl1	98.78(9)	O4–Fe1–Cl1	100.7(2)
O3–Fe1–Cl1 ^a	87.42(12)	O2–Fe1–Cl2	92.53(8)	03–Fe1–01	79.8(3)
O3–Fe1–Cl1	87.42(12)	O3–Fe1–Cl1	168.13(8)	O3–Fe1–Cl2	167.9(3)
O3–Fe1–Cl2	179.60(19)	O3–Fe1–Cl2	91.72(8)	O3–Fe1–Cl1	90.0(2)
Cl1 ^a -Fe1-Cl1	100.09(6)	O4–Fe1–Cl1 ^b	95.34(9)	O1–Fe1–Cl2	91.6(2)
Cl1 ^a -Fe1-Cl2	92.32(5)	O4–Fe1–Cl12 ^b	100.71(9)	O1–Fe1–Cl1	167.2(3)
Cl1–Fe1–Cl2	92.32(5)	Cl1–Fe1–Cl2	99.44(4)	Cl2–Fe1–Cl1	99.58(18)

^{*a*}Symmetry operators: *i*) x, 1/2-y, z^{*b*}Symmetry operators: *i*) -x, -y, 2 - z + 2.

 $\label{eq:table_set} \begin{array}{l} \textbf{Table S2} \ Hydrogen-bonding geometry in compounds \\ (NH_4)_2[Fe(H_2O)Cl_3(C_2O_4)]\cdot H_2O\ \textbf{(1)} \ and \ \{[NH(CH_3)_2(C_2H_5)][FeCl_2(C_2O_4)]\cdot H_2O\}\ \textbf{(2)} \end{array}$

Compound	D-H…A	<i>D</i> –H / Å	H…A/ Å	<i>D</i> …A / Å	<i>D</i> –H…A / °	Symm. op. on A
	N1–H1A…Cl1	0.95(8)	2.70(5)	3.413(6)	132.4(13)	1 + <i>x</i> , <i>y</i> , <i>z</i>
	N1–H1B…O2	0.94(3)	2.47(5)	3.162(8)	131(3)	2 - x, $-1/2 + y$, $2 - z$
	N1-H1C…O1	0.94(4)	1.89(5)	2.820(6)	171(5)	x, y, z
	N2–H2A…O1	0.95(7)	2.40(7)	3.120(7)	132(6)	x, y, z
	N2–H2A…O2	0.95(7)	2.53(7)	3.469(9)	168(5)	x, y, z
1	N2–H2C…O4	0.93(9)	1.95(10)	2.752(13)	143(10)	1 - x, -1/2 + y, 1 - z
	03–H3A…01	0.93(6)	1.93(6)	2.800(4)	155(6)	1 − <i>x</i> , − <i>y</i> , 2 − z
	O4–H4A…Cl1	1.07	2.54	3.386(7)	135	1 + <i>x</i> , <i>y</i> , <i>z</i>
	O4–H4A…Cl2	1.07	2.75	3.359(9)	116	1 + <i>x</i> , <i>y</i> , <i>z</i>
	04–H4BA…O2	0.96(6)	2.41(4)	3.219(9)	142.6(17)	x, y, z
	O4–H4B…N2	0.96(6)	2.41(6)	2.752(13)	101(3)	1 - x, $1/2 + y$, $1 - z$
	N1–H1…O5	0.98	1.79	2.755(4)	170	1 - x, 1 - y, 1 - z
2	05–H5C…01	0.94(5)	1.85(4)	2.747(4)	158(4)	1 + <i>x</i> , <i>y</i> , <i>z</i>
	O5–H5D…Cl2	0.95(4)	2.52(4)	3.364(3)	148(4)	1 + <i>x</i> , <i>y</i> , <i>z</i>
	05–H5D…05	0.95(4)	2.52(4)	3.364(3)	148(4)	1 + <i>x</i> , <i>y</i> , <i>z</i>

Fig. S2 ORTEP-3 drawing of a formula unit of compound $\{[NH(CH_3)_2(C_2H_5)][FeCl_2(C_2O_4)] \cdot H_2O\}_n$ (2) with atom numbering scheme. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Fig. S3 ORTEP-3 drawing of a formula unit of compound $\{[N(CH_3)(C_2H_5)_3][FeCl_2(C_2O_4)]\}_n$ (**3**) at room temperature with atom numbering scheme. Displacement ellipsoids are drawn for the probability of 30 % and hydrogen atoms are shown as spheres of arbitrary radii.

Fig. S4 Infrared spectra of compounds (a) $(NH_4)_2[Fe(H_2O)Cl_3(C_2O_4)] \cdot H_2O$ (1) (b) $\{[NH(CH_3)_2(C_2H_5)][FeCl_2(C_2O_4)] \cdot H_2O\}_n$ (2) and (c) $\{[N(CH_3)(C_2H_5)_3][FeCl_2(C_2O_4)]\}_n$ (3).

Table	S3	Selected	absorption	bands	(cm ⁻¹)	of	the	oxalate	groups	in	the	infrared	spectra	of
compo	ound	ds 1–3												

	Bident	tate oxalat	e group	Bis(bidentate) oxalate group			
Comp.	v _{as} (CO)	v _s (CO)	δ(OCO)	v _{as} (CO)	v _s (CO)	δ(OCO)	
1	1711 1681 1651	1397 1261	794	_	_	_	
2	_	_	_	1694, 1609	1350, 1307	805	
3	_	—	_	1697 1609	1350 1307	808	

Fig. S5 TG curves for compounds (a) $(NH_4)_2[Fe(H_2O)Cl_3(C_2O_4)] \cdot H_2O$ (1), (b) $\{[NH(CH_3)_2(C_2H_5)][FeCl_2(C_2O_4)] \cdot H_2O\}_n$ (2) and (c) $\{[N(CH_3)(C_2H_5)_3][FeCl_2(C_2O_4)]\}_n$ (3), measured in the synthetic air atmosphere.

Fig. S6 Experimental PXRD patterns of compound $(NH_4)_2[Fe(H_2O)Cl_3(C_2O_4)]\cdot H_2O$ (1): (a) before the humidity treatment, (b) after 2 hours of the humidity treatment (65% RH), (c) after 4 hours of the humidity treatment (65% RH), and (d) the simulated pattern from its single-crystal diffraction data.

Fig. S7 Experimental PXRD patterns of compound $\{[NH(CH_3)_2(C_2H_5)][FeCl_2(C_2O_4)] \cdot H_2O\}_n$ (2): (a) before the humidity treatment, (b) after 2 hours of the humidity treatment (90% RH), (c) after 18 hours of the humidity treatment (90% RH), and (d) the simulated pattern from its single-crystal diffraction data.

Fig. S8 Experimental PXRD patterns of compound $\{[N(CH_3)(C_2H_5)_3][FeCl_2(C_2O_4)]\}_n$ (**3**): (a) before humidity treatment, (b) after 2 hours of the humidity treatment (90% RH), (c) after 18 hours of the humidity treatment (90% RH), and (d) the simulated pattern from its single-crystal diffraction data.

Table S4 The valu	es of electrical	conductivity at	t different i	relative h	numidifies for	compounds :	1–3 and
compound from F	≀ef. [29]						

1		2			3	Compound 1 from Ref. [29]	
RH / %	$\sigma_{ m DC}$ / (Ω cm) ⁻¹	RH / %	$\sigma_{ m DC}$ / (Ω cm) ⁻¹	RH / %	$\sigma_{ m DC}$ / (Ω cm) ⁻¹	RH / %	$\sigma_{ m DC}$ / (Ω cm) ⁻¹
10	4.59 × 10 ⁻¹¹	10	1.69×10^{-10}	10	3.68 × 10 ⁻¹¹	61	1.48 × 10 ⁻⁹
24	1.25×10^{-10}	46	4.81×10^{-10}	34	4.74×10^{-11}	75	1.05 × 10 ⁻⁶
74	2.17 × 10 ⁻³	75	1.45 × 10 ⁻⁶	75	4.97 × 10 ⁻⁷	80	7.59 × 10⁻ ⁶
		84	2.98 × 10 ⁻⁵	84	6.38 × 10 ⁻⁶	84	2.24 × 10 ⁻⁵
		93	2.00×10^{-4}	93	9.17 × 10 ⁻⁶	93	2.70 × 10 ⁻⁴