Support information for: Constructing ultra-stable and high-performance zinc-ion batteries through Mn doped vanadium oxide nanobelt cathode

Tiantian Wang^a, Yapeng Yuan^a, Mengwei Chang^a, Yue Zhang^a,

Junhua You^a, Fang Hu,^{*a}

^a School of Materials Science and Engineering, Shenyang University

of Technology, Shenyang 110870, Liaoning, China

E-mail: hufang25@126.com

Experimental Section

Materials preparation: The $Mn_xVO_2 \cdot 0.2H_2O$ was prepared with a simple solvothermal method. The Solvothermal solution was prepared by dissolving 0.6g V_2O_5 powder and 1.2g H_2C_2O_4 powder into 20 mL of distilled water at 85 °C for vigorous stirring about 3 h until VOC_2O_4 (dark blue solution) was formed. Then 4.67 mL 30 % H_2O_2 was slowly added (this step reacts violently) and kept continuously stirring about 30 min to obtain a brown solution, then 16 mg Mn(CH_3COO)₂·4H₂O was finally added into above-mentioned solution to obtain the Mn-doped vanadium oxide solution and stirred for 10 min until it was totally dissolved. The mixture was then given a 60 mL ethanol addition, and stirring continued for 60 min. The created dark-green slurry was then put into a 100 mL Teflon-lined autoclave and heated to 170°C for 12 hours. The precipitate was then collected, carefully cleaned with ethanol and deionized water, and dried for 12 hours at 60°C.

We analyzed the samples with an X-ray diffractometer using Cu K α radiation (λ = 0.1542 nm). In order to determine the morphology and microstructure of the samples, scanning electron microscopy (SEM, Hitachi-4800) and transmission electron microscopy (TEM, JEM-2100 PLUS) were carried out. Chemical bond valences and elemental compositions of the cathode material surface were measured using X-ray photoelectron spectroscopy (XPS). A Bruker D8 Advance diffractometer was used to measure ex-situ XRD patterns of the samples.

The calculations are implemented in Vianna Ab-initio Simulation Package

of density functional theory, which use projector augmented wave method¹. The following valence electron configurations are used: $O(1S^22S^22P^4)$, $V((1S^22S^22P^63S^23P^64S^23d^5)$, $Mn(1S^22S^22P^63S^23P^64S^23d^5)$ and $Zn(1S^22S^22P^63S^23P^64S^23d^{10})$. We sel ect generalized gradient approximation (PBE flavor) as exchange-correlation pot ential ². Brillouin zone integrations are used for geometry optimization and ele ctronic structure calculations, performing on $2 \times 2 \times 3$ k-meshes. The energy criter ion, iterative solution of the kohn-sham equations is set to 10^{-5} eV. A cut –off energy of plane wave basis is performed 450 eV, which is decided to yield co nverged results. On the atoms, the residual force is set to 0.03 eV/Å. When it less than 0.03 eV/Å, the structures will be relaxed.

electrode An active prepared by mixing acetylene was black. polytetrafluoroethylene emulsion, and active materials in a weight ratio of 2:1:7. Then upon rolling the mixture into a uniform thickness, which was pressed onto conductive carbon paper with a diameter of 1 cm. The active materials were loaded at an average mass of 1.3 mg/cm². A solution of Zn(CF₃SO₃)₂ was used as the electrolyte. The electrochemical characteristics and electrochemical reaction kinetics analysis of the coin cells were tested using an electrochemical workstation (Bio-Logic VSP-300). Galvanostatic charge-discharge cycling was carried out using multichannel galvanostatic testers (Neware CT-4000).

TableS1. ICP test results

Sample	Element	Weight	volume	Dilution	Instrument	Sample	Unit
label	label	/g	ml	coefficien	reading mg/L	concentration	
				t			
Yan Chen	Mn	0.0546	50	50	0.448	20512.7365	mg/kg
Yan Chen	V	0.0546	50	50	11.4468	524120.7064	mg/kg

Figure S1. Thermogravimetric Curve of $VO_2 \bullet 0.2H_2O$

Figure S2. CV curves of $VO_2 \cdot 0.2H_2O$ at different scan rates

Figure S3. Log (i, current) versus log (mV, scan rate) plots of VO₂·0.2H₂O at specific current.

Figure S4. The capacitive contribution ratio of VO₂·0.2H₂O at 0.5mVs⁻¹ scan rates

Figure S5. The capacitive contribution ratio of $Mn_xVO_2 \cdot 0.2H_2O$ at $0.5mVs^{-1}$ scan rates

Figure S6. The capacitive contribution ratio of VO₂·0.2H₂O at various scan rate

Figure S8. The first three discharge-charge profiles of VO₂·0.2H₂O at a current density of 500

Figure S9. XRD patterns of $Mn_x VO_2 \cdot 0.2H_2O$ electrode sheet after 500 cycles

	Mn _x VO ₂ ·0.2H ₂ O	VO ₂ ·0.2H ₂ O Pristine	Mn _x VO ₂ ·0.2H ₂ O	VO ₂ ·0.2H ₂ O		
	Pristine electrode	electrode	10 cycles	10 cycles		
Equivalent circuit diagram						
R2(Ω)	9.68	18.96	36.52	67.14		
R1(Ω)	2.23	2.76	2.14	2.21		

Table S2. Electrochemical impedance spectra of $Mn_xVO_2 \cdot 0.2H_2O$ and $VO_2 \cdot 0.2H_2O$

Table S3. The integral of the ICOHP

COHP# Zn- Mn _{0.04} VO ₂	atom	atom	distance	ІСОНР
Spin up	V17	O89	2.20497	-1.96883
Spin down	V17	O89	2.20497	-2.02170

COHP# Zn-VO ₂	atom	atom	distance	ІСОНР
Spin up	V15	087	2.08418	-1.77492
Spin down	015	V87	2.08418	-1.83334

Reference

(1) Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H., Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. *Journal of physics: Condensed matter* **2010**, *22* (25), 253202.

(2) Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. *Physical review letters* **1996**, *77* (18), 3865.