Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Photoinduced Enhancement of Intraligand Charge-Transfer of a Crystalline 3,3'-diindolyl(3-pyridyl)methane

Chaowat Kaenpracha, ^a Praewpan Katrun, ^b Kittipong Chainok, ^c Chattarika Sukpattanacharoen, ^d Nawee Kungwan, ^d and Jaursup Boonmak ^a,*

^aMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.(e-mail: jaursup@kku.ac.th) ^bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand ^c Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA),

 Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
^d Department of Chemistry, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand

*E-mail: jaursup@kku.ac.th

Tables S1-S16

Table S1 Crystal data and structural refinement for PMDI·MeOH and PMDI·MeOH	(CCDC
nos. 2266873-2266874).	

crystal data	PMDI·MeOH	PMDI·MeOH'
formula	$C_{23}H_{21}N_{3}O$	$C_{23}H_{21}N_{3}O$
formula weight	355.443	355.443
temperature (K)	296.15	296.15
crystal system	Monoclinic	Monoclinic
space group	$P2_1/n$	$P2_1/n$
<i>a</i> (Å)	14.5200(7)	14.5277(5)
b (Å)	9.3992(5)	9.4021(4)
<i>c</i> (Å)	15.1096(8)	15.0821(6)
α(°)	90	90
β (°)	112.583(2)	112.559(1)
γ (°)	90	90
$V(Å^3)$	1903.99(17)	1902.45(13)
Ζ	4	4
D_{calc} (g cm ⁻³)	1.240	1.241
<i>F</i> (000)	752.442	752.442
μ(Mo Kα) (mm ⁻¹)	0.077	0.078
data collected	3602	4533
unique data (<i>R</i> _{int})	2805(0.0912)	3596(0.0968)
$R_1^{a}/wR_2^{b} [I > 2\sigma(I)]$	0.0694/0.1599	0.0746/0.1557
R_1^{a}/wR_2^{b} (all data)	0.0923/0.1730	0.0964/0.1672
GOF	1.0789	1.0891
max/min e ⁻ density (e Å ⁻³)	0.3424/-0.3314	0.2700/-0.3204

 ${}^{\mathbf{a}}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|. {}^{\mathbf{b}}wR_{2} = \{\sum [w(|F_{0}| - |F_{c}|)]^{2} / \sum [w|F_{0}|^{2}]\}^{1/2}.$

Bond angles	PMDI ·MeOH	PMDI·MeOH '
O(1) – C(1)	1.415(5)	1.409(5)
N(1) - C(2)	1.342(4)	1.339(3)
N(1) - C(6)	1.333(4)	1.331(3)
N(2) – C(8)	1.376(3)	1.377(3)
N(2) – C(15)	1.373(4)	1.370(3)
N(3) – C(16)	1.373(4)	1.376(3)
N(3) – C(23)	1.378(4)	1.373(3)
C(7) – C(9)	1.514(3)	1.511(3)
C(7) - C(17)	1.505(4)	1.505(3)

Table S2 Selected bond distances (Å) of PMDI·MeOH and PMDI·MeOH'.

Table S3 Selected bond angles (°) of PMDI·MeOH and PMDI·MeOH'.

Bond angles	PMDI ·MeOH	PMDI·MeOH ′
C(2) - N(1) - C(6)	116.9(3)	117.1(2)
C(8) - N(2) - C(15)	108.8(2)	108.86(18)
C(16) - N(3) - C(23)	108.7(2)	108.8(2)
C(3) - N(7) - C(9)	111.2(2)	111.30(17)
C(3) - N(7) - C(17)	112.2(2)	112.31(17)
C(9) - N(7) - C(17)	114.71(19)	114.68(17)

Table S4 Hydrogen bond lengths (Å) and angles (°) for PMDI·MeOH and PMDI·MeOH'.

PMDI·MeOH/ PMDI·MeOH'					
D-H···A	d(D-H) /Å	d(H ···A)/Å	d(D····A)∕Å	<(DHA)/°	
O(1)−H…N(1)	0.82(2)/0.82(2)	1.95(3)/(1.93(2)	2.715(3)/(2.716(3)	156(3)/161(2)	
N(2)−H…O(1)	0.860(3)/0.860(3)	2.180(3)/2.180(3)	3.000(3)/3.000(3)	159.3(3)/159.3(3)	
N(3)−H…O(1)	0.860(3)/0.860(3)	2.307(3)/2.310(3)	2.993(3)/2.993(3)	136.8(3)/136.6(2)	

	PMDI·MeOH/ PMDI·MeOH	
π -interaction	d(H⋯cg)/Å	<(C-H…cg)/°
$C(4) - H \cdots cg(5)$	2.628(3)/2.630(2)	141.5(3)/141.2(3)
$C(5) - H \cdots cg(1)$	2.985(3)/2.987(3)	139.7(3)/139.9(3)
$C(6) - H \cdots cg(4)$	2.986(3)/2.986(3)	140.0(3)/140.5(3)
$C(8) - H \cdots cg(2)$	2.854(3)/2.853(2)	125.0(3)/125.1(2)
$C(14) - H \cdots cg(4)$	3.710(3)/3.708(2)	77.1(3)/77.3(2)

Table S5 π -interactions distances (Å) for PMDI·MeOH and PMDI·MeOH'.

Table S6 Crystal data and structural refinement for the same single crystal of **PMDI·MeOH**at various UV irradiation times and irradiated **PMDI·MeOH** that was left under ambient lightfor 2 weeks (CCDC nos. 2303197-2303201).

crystal data	As-prepared	25 min	40 min	80 min	2 weeks
formula	C ₂₃ H ₂₁ N ₃ O				
formula weight	355.443	355.443	355.443	355.443	355.443
temperature (K)	296(2)	296(2)	296(2)	296(2)	296(2)
crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$
a (Å)	14.5114(18)	14.4915(18)	14.4807(19)	14.4831(18)	14.4804(19)
b (Å)	9.3994(11)	9.3952(9)	9.3916(10)	9.3913(9)	9.3873(10)
c (Å)	15.0586(18)	15.0402(19)	15.0389(19)	15.0356(19)	15.0373(19)
α(°)	90	90	90	90	90
β (°)	112.506(4)	112.575(4)	112.567(4)	112.580(4)	112.596(4)
γ (°)	90	90	90	90	90
V (Å ³)	1897.5(4)	1890.8(4)	1888.6(4)	1888.3(4)	1887.1(4)
Ζ	4	4	4	4	4
D _{calc} (g cm ⁻³)	1.244	1.249	1.250	1.250	1.251
<i>F</i> (000)	752.442	752.442	752.442	752.442	752
μ(Mo Kα) (mm ⁻¹)	0.078	0.078	0.078	0.078	0.078
data collected	3592	3727	3720	3720	3448
unique data (<i>R</i> _{int})	2222(0.0560)	2056(0.0650)	2036(0.0665)	2049 (0.0657)	2145(0.0452)
$R_1^{\mathrm{a}}/wR_2^{\mathrm{b}}[I > 2\sigma(I)]$	0.1083/0.2779	0.1197/0.3027	0.1119/0.2865	0.1189/0.3019	0.1228/0.3134
R_1^{a}/wR_2^{b} (all data)	0.1548/0.4118	0.1787/0.4518	0.1730/0.4333	0.1776/0.4517	0.1708/0.4094
GOF	1.5726	1.6254	1.5304	1.6190	1.5692
max/min e ⁻ density (e Å ⁻³)	0.5477/-0.4368	0.5526/-0.4247	0.4400/-0.4421	0.5611/-0.5150	0.5626/-0.4913

 ${}^{\mathbf{a}}R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|. \ {}^{\mathbf{b}}wR_2 = \{\sum [w(|F_0| - |F_c|)]^2 / \sum [w|F_0|^2] \}^{1/2}.$

Bond angles	As-prepared	25 min	40 min	80 min	2 weeks
O(1) - C(1)	1.408(8)	1.408(9)	1.409(9)	1.408(9)	1.394(9)
N(1) – C(2)	1.342(6)	1.332(8)	1.335(8)	1.341(8)	1.343(8)
N(1) - C(6)	1.334(7)	1.333(8)	1.335(7)	1.330(7)	1.337(7)
N(2) – C(8)	1.374(5)	1.376(7)	1.378(6)	1.373(7)	1.377(6)
N(2) - C(11)	1.366(6)	1.371(6)	1.367(6)	1.365(7)	1.365(6)
N(3) – C(16)	1.379(7)	1.379(8)	1.376(8)	1.380(8)	1.380(8)
N(3) – C(19)	1.363(6)	1.371(7)	1.369(7)	1.365(7)	1.370(6)
C(7) - C(9)	1.505(6)	1.507(6)	1.510(6)	1.501(6)	1.502(6)
C(7) - C(17)	1.508(6)	1.490(8)	1.489(6)	1.493(7)	1.492(6)

Table S7 Selected bond distances (Å) for the same single crystal of **PMDI**·**MeOH** at various irradiation times and irradiated **PMDI**·**MeOH** that was left under ambient light for 2 weeks.

Table S8 Selected bond angles (°) for the same single crystal of **PMDI**·MeOH at various irradiation times and irradiated **PMDI**·MeOH that was left under ambient light for 2 weeks.

Bond angles	As-prepared	25 min	40 min	80 min	2 weeks
C(2) - N(1) - C(6)	117.2(4)	117.8(5)	117.0(5)	117.4(5)	117.1(4)
C(8) - N(2) - C(11)	108.8(4)	108.8(4)	108.8(4)	109.0(4)	109.0(4)
C(16) - N(3) - C(19)	109.1(4)	108.6(4)	108.7(4)	108.6(4)	108.5(4)
C(3) - C(7) - C(9)	111.6(4)	110.8(4)	110.8(4)	111.3(4)	111.1(4)
C(3) - C(7) - C(17)	112.5(4)	112.9(4)	112.8(4)	112.7(4)	113.2(4)
C(9) - C(7) - C(17)	114.2(3)	114.6(4)	114.6(4)	114.4(4)	114.3(4)

Table S9 Hydrogen bond lengths (Å) and angles (°) of O(1)-H…N(1) for the same single crystal
of PMDI·MeOH at various irradiation times and irradiated PMDI·MeOH that was left under
ambient light for 2 weeks.

Irradiation time	d(H···A)∕Å	d(D····A)/Å	<(DHA)/°
As-prepared	1.71(6)	2.704(6)	168(4)
25 min	1.93(5)	2.712(6)	160(6)
40 min	1.90(5)	2.706(6)	167(5)
80 min	1.90(5)	2.701(6)	165(5)
2 weeks	1.92(5)	2.708(6)	162(5)

Irradiation time	d(H····A)/Å	d(D ⋯ A)/Å	<(DHA)/°
As-prepared	2.195(5)	3.013(5)	158.7(5)
25 min	2.189(6)	3.007(5)	158.7(5)
40 min	2.184(6)	3.003(5)	159.0(5)
80 min	2.186(6)	3.006(5)	159.3(5)
2 weeks	2.180(6)	3.002(5)	159.7(5)

Table S10 Hydrogen bond lengths (Å) and angles (°) of $N(2)-H\cdots O(1)$ for the same single crystal of **PMDI**·MeOH at various irradiation times and irradiated **PMDI**·MeOH that was left under ambient light for 2 weeks.

Table S11 Hydrogen bond lengths (Å) and angles (°) of $N(3)-H\cdots O(1)$ for the same single crystal of **PMDI**·MeOH at various irradiation times and irradiated **PMDI**·MeOH that was left under ambient light for 2 weeks.

Irradiation time	d(H····A)∕Å	d(D ⋯ A)/Å	<(DHA)/°
As-prepared	2.301(5)	2.990(5)	137.1(4)
25 min	2.301(6)	2.985(6)	136.7(5)
40 min	2.300(6)	2.987(6)	137.0(4)
80 min	2.296(6)	2.981(6)	136.7(5)
2 weeks	2.291(6)	2.981(6)	137.2(4)

Table S12 CH···cg distances of π -interactions (Å) for the same single crystal of **PMDI·MeOH** at various irradiation times and irradiated **PMDI·MeOH** that was left under ambient light for 2 weeks.

PMDI·MeOH/ PMDI·MeOH′								
π-interaction	As-prepared	25 min	40 min	80 min	2 weeks			
$C(4) - H \cdots cg(5)$	2.634(5)	2.636(5)	2.628(5)	2.622(5)	2.619(5)			
$C(5) - H \cdots cg(1)$	2.983(6)	2.985(6)	2.986(6)	2.978(6)	2.975(6)			
$C(6) - H \cdots cg(4)$	2.988(6)	2.971(7)	2.975(6)	2.976(7)	2.964(6)			
$C(8) - H \cdots cg(2)$	2.855(5)	2.851(5)	2.850(5)	2.844(5)	2.849(5)			
$C(12) - H \cdots cg(4)$	3.698(5)	3.680(5)	3.688(5)	3.668(5)	3.675(5)			
$cg(4)\cdots cg(4)$	3.921(3)	3.917(4)	3.920(4)	3.916(4)	3.924(3)			

	S ₀ state							
Molecule		Distance (Å))	Dihedral angle (°)				
	N(2)…O(1)	N(3)…O(1)	O(1)…N(1)	N(2)H…O(1)	N(3)H…O(1)	O(1)H…N(1)		
PMDI:MeOH-a	2.902	-	-	172.0	-	-		
PMDI:MeOH-b	-	2.902	-	-	170.5	-		
PMDI:MeOH-c	-	-	2.862	-	-	157.9		
PMDI:2MeOH-ab	2.907	2.903	-	171.0	169.1	-		
PMDI:2MeOH-ac	2.898	-	2.860	170.2	-	158.9		
PMDI:2MeOH-bc	-	2.891	2.862	-	166.2	158.6		
PMDI:3MeOH	2.904	2.896	2.859	170.3	165.8	159.8		
	S ₁ state							
	Distance (Å)			Dihedral angle (°)				
	N(2)…O(1)	N(3)…O(1)	O(1)…N(1)	N(2)H…O(1)	N(3)H…O(1)	O(1)H…N(1)		
PMDI:MeOH-a	2.828	-	-	175.6	-	-		
PMDI:MeOH-b	-	2.805	-	-	170.1	-		
PMDI:MeOH-c	-	-	2.718	-	-	161.3		
PMDI:2MeOH-ab	2.889	2.811	-	155.0	171.1	-		
PMDI:2MeOH-ac	2.825	-	2.713	176.6	-	162.1		
PMDI:2MeOH-bc		2 716	2.653	-	145.5	162.2		
	-	2.710	2.000		1 1010	10212		

Table S13 Selected distances and dihedral angles (°) at S_0 and S_1 optimized geometries computed at B3LYP/6-311G(d) and TD-B3LYP/6-311G(d) levels.

Molecule	$\lambda_{abs}(nm)$	f	MOs contribution	Character	
PMDI	260	0.062	H-1→L+3 (72%)	¹ LLCT	
	368	0.004	H→L (97%)	¹ LLCT	
PMDI-MaOH a	266	0.063	H-1→L+1 (55%)	π-π* IL	
r wibr weon-a	301	0.011	H→L (96%)	¹ LLCT	
DMDLMaOH h	268	0.058	H→L+3 (82%)	π-π* IL	
PMDI MeOH-b	310	0.004	H→L (98%)	¹ LLCT	
PMDI-MeOH c	261	0.063	H-1→L+2 (81%)	π-π* IL	
PMDI-MeOH-C	319	0.004	H→L (99%)	¹ LLCT	
PMDI·2MeOH-ab	266	0.064	H-1→L+2 (76%)	π-π* IL	
	311	0.003	H→L (98%)	¹ LLCT	
PMDI·2MeOH-ac	264	0.050	H-1→L+2 (88%)	π-π* IL	
	324	0.007	H→L (94%)	¹ LLCT	
PMDI·2MeOH-bc	262	0.063	H-1→L+2 (81%)	π-π* IL	
	339	0.007	H→L (99%)	¹ LLCT	
	265	0.064	H-1→L+2 (87%)	π-π* IL	
	339	0.005	H→L (99%)	¹ LLCT	

Table S14 Theoretical absorption data for S_0 state, oscillator strength (f), and molecularorbitals (MOs) contribution calculated by TD-B3LYP/6-311G(d) level.

Table S15 Theoretical absorption data for S_1 state, oscillator strength (f), and molecularorbitals (MOs) contribution calculated by TD-B3LYP/6-311G(d) level.

Molecule	$\lambda_{emiss}(nm)$	f	MOs contribution	Character
DMDI	282	0.065	H→L+2 (64%)	π-π* IL
rwidi	368	0.002	H→L (100%)	¹ LLCT
PMDI-MeOH a	301	0.056	H→L+3 (90%)	π-π* IL
	413	0.012	H→L (100%)	¹ LLCT
PMDI-MeOH h	286	0.083	H→L+3 (86%)	π-π* IL
	388	0.002	H→L (100%)	¹ LLCT
PMDI·MeOH-c	263	0.037	H-1→L+1 (59%)	π-π* IL
	447	0.005	H→L (100%)	¹ LLCT
PMDI-2MeOH ab	287	0.079	H→L+3 (90%)	π-π* IL
r MDI 2MeOn-au	397	0.001	H→L (100%)	¹ LLCT
PMDI·2MeOH-ac	302	0.062	H→L+3 (93%)	π-π* IL
	474	0.004	H→L (100%)	¹ LLCT
PMDI·2MeOH-bc	294	0.053	H→L+3 (92%)	π-π* IL
	515	0.003	H→L (100%)	¹ LLCT
	303	0.035	H→L+3 (78%)	π-π* IL
	553	0.008	H→L (100%)	¹ LLCT

Malagula		So state		S ₁ state		
WIOICCUIC	НОМО	LUMO	Eg	HOMO	LUMO	Eg
PMDI	-5.55	-0.74	4.82	-5.21	-1.21	4.00
PMDI·MeOH-a	-5.32	-0.60	4.72	-4.69	-1.08	3.62
PMDI·MeOH-b	-5.20	-0.59	4.61	-4.85	-1.03	3.82
PMDI·MeOH-c	-5.59	-1.09	4.50	-5.04	-1.65	3.39
PMDI·2MeOH-ab	-5.06	-0.45	4.61	-4.75	-1.00	3.75
PMDI·2MeOH-ac	-5.39	-0.96	4.43	-4.77	-1.54	3.23
PMDI·2MeOH-bc	-5.24	-0.96	4.28	-4.86	-1.82	3.03
PMDI·3MeOH	-5.11	-0.83	4.27	-4.56	-1.71	2.86

Table S16 HOMO and LUMO energy levels (eV) at S_0 and S_1 optimized geometries calculated by TD-B3LYP/6-311G(d) level.

Figure S1 The comparison of FTIR spectra of PMDI·MeOH and PMDI·MeOH'.

Figure S2 The comparison of thermograms of PMDI·MeOH and PMDI·MeOH'.

Figure S3 The PXRD pattern of PMDI·MeOH.

Figure S4 The variations of hydrogen bonds for PMDI·MeOH at various irradiation times and irradiated PMDI·MeOH that was left under ambient light for 2 weeks.

Figure S5 The variations of CH- π interactions for **PMDI**·**MeOH** at various irradiation times and irradiated **PMDI**·**MeOH** that was left under ambient light for 2 weeks.

Figure S6 The shortened distances between three adjacent PMDI molecules measured between C(7) atoms of **PMDI** at various irradiation times and irradiated **PMDI**·MeOH that was left under ambient light for 2 weeks.

Figure S7 The variations of short contacts around C(1) atom of methanol in **PMDI**·MeOH at various irradiation times and irradiated **PMDI**·MeOH that was left under ambient light for 2 weeks.

Figure S8 The variations of short contacts around O(1) atom of methanol in **PMDI**·**MeOH** at various irradiation times and irradiated **PMDI**·**MeOH** that was left under ambient light for 2 weeks.

Figure S9 (A) The PXRD patterns of **PMDI·MeOH**' and close-up diffraction peaks of (B) (101), (C) (20-2), and (D) (311).

Figure S10 The ESI-MS spectra of (A) PMDI·MeOH and (B) PMDI·MeOH'.

Figure S11 ¹H-NMR spectrum of synthesized PMDI.

Figure S12 ¹H-NMR spectrum of synthesized PMDI'.

Figure S13 ¹H-NMR spectrum of synthesized PMDI".

Figure S14 The color change of PMDI·MeOH upon UV irradiation and heating and the diffuse reflectance spectra of as-prepared, irradiated, heated PMDI·MeOH and irradiation treatment after heating of PMDI·MeOH.

Figure S15 The thermogram of PMDI·MeOH''.

Figure S16 The comparison of FTIR spectra of PMDI·MeOH, PMDI·MeOH'' and irradiated PMDI·MeOH''.

Figure S17 The comparison of PXRD patterns of PMDI·MeOH, PMDI·MeOH" and irradiated PMDI·MeOH".

Figure S18 S₀ and S₁ optimized geometries computed at B3LYP/6-311G(d) level.

Figure S19 HOMO and LUMO orbitals and frontier MOs corresponding to the main transition of absorption spectra at S₀ optimized geometries computed at TD-B3LYP/6-311G(d) level.

Figure S20 HOMO and LUMO orbitals and frontier MOs corresponding to the main transition of absorption spectra at S₁ optimized geometries computed at TD-B3LYP/6-311G(d) level.