Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

sulfamethoxazole

Scheme S1 the backbone of the antibiotics pollutants of chloramphenicol (CAP), nitrofurazone (NFZ), ornidazole (ODZ), oxytetracycline (OXY), and sulfamethoxazole (SMT).

Fig. S2 The photographs of the compound before and after exposed to the analytes under UV light

Fig. S4 the PXRD of each coordination polymer before and after photodegradation of NFZ for CPs 1-4

Fig. S5 Results of the photocatalytic recycles for CP 2 against the photodegradation of NFZ antibiotic.

Table S1.	Crystallographic	data and	structure refinement	details for	CPs 1 and 2

Parameter	1	2
Formula	$C_{28}H_{23}Mn_2NO_{15}$	$C_{31}H_{30}Mn_2N_2O_{15}\\$
Formula weight	723.35	954.69
Crystal system	Monoclinic	Monoclinic
Space group	P21/c	P21/c
Crystal Color	Colourless	Colourless
<i>a</i> , Å	10.1417(2)	14.081(4)
<i>b</i> , Å	18.8610(3)	19.265(5)
<i>c</i> , Å	16.4838(2)	16.785(5)
α, °	90	90
eta,\circ	105.408(2)	100.610(6)
γ, °	90	90
<i>V</i> , Å ³	3039.74(9)	4475(2)
Ζ	4	4
$\rho_{calAg}, g/cm^3$	1.581	1.417
μ , mm ⁻¹	7.430	0.639
<i>F</i> (000)	1472	1984
θ Range, deg	3.6-76.1	1.5-27.8
Reflection Collected	19316	25375
Independent reflections (R_{int})	0.047	0.073

Reflections with $I > 2\sigma(I)$	5215	5183
Number of parameters	437	573
$R_1, wR_2 (I > 2\sigma(I))^*$	0.0805, 0.2342	0.0653, 0.1522
R_1, wR_2 (all data)**	0.0892, 0.2419	0.1413, 0.1871

Table S2. Crystallographic data and structure refinement details for CPs 3 and 4

_

Parameter	3	4
Formula	$C_{23}H_{16}MnO_{14}$	$C_{33} H_{22} Mn N_2 O_{13}$
Formula weight	571.30	709.46
Crystal system	Monoclinic	Triclinic
Space group	P2/c	P-1
Crystal Color	Colorless	Yellow
<i>a</i> , Å	19.1708(8)	11.2767(4)
b, Å	6.2123(3)	11.9402(4)
<i>c</i> , Å	9.5258(5)	12.4311(4)
α, °	90	96.076(3)
eta,\circ	102.172(4)	104.603(3)
γ, °	90	111.886(3)
<i>V</i> , Å ³	1108.97(9)	1465.30(10)
Ζ	2	2
$\rho_{calAg}, g/cm^3$	1.711	1.608
μ , mm ⁻¹	0.676	4.351
<i>F</i> (000)	582	726
θ Range, deg	3.3-30.3	4.1-76.2
Reflection Collected	11811	17701
Independent reflections (R_{int})	0.045	0.050
Reflections with $I > 2\sigma(I)$	2732	4994
Number of parameters	213	446
$R_1, wR_2 (I > 2\sigma(I))^*$	0.0389, 0.0987	0.0494, 0.1318
R_1 , wR_2 (all data)**	0.0505, 0.1052	0.0559, 0.1363

Table S3. Selected bond distances (Å) and angles (deg) for 1-4				
Mn(1)-O(1)	2 112(4)	1	Mn(1)-O(13)	2 165(5)
Mn(1) - O(14)	2.112(1) 2.219(4)		Mn(1) - O(6) #1	2.100(0) 2.226(4)
Mn(1) - O(4) # 2	2.219(1) 2 204(4)		Mn(1) - O(9) # 2	2.220(1)
Mn(2)-O(2)	2.108(4)		Mn(2)-O(15)	2.141(5)
Mn(2) = O(5) # 1	2.160(4)		Mn(2) O(10)#1	2.11(3)
Mn(2) - O(4) # 2	2.100(1)		Mn(2) = O(6) # 2	2.217(3) 2 317(4)
1011(2) = (1)112	2.170(3)	2	VIII(2) = O(0)/2	2.517(1)
Mn(1)-O(1)	2.101(3)	-	Mn(1)-O(13)	2.131(3)
Mn(1)-O(5)#1	2.182(3)		Mn(1)-O(10)#1	2.176(3)
Mn(1)-O(4)#2	2.215(3)		Mn(1)-O(6)#2	2.283(3)
Mn(2)-O(2)	2.128(3)		Mn(2)-O(14)	2.171(4)
Mn(2)-O(17)	2.174(3)		Mn(2)-O(6)#1	2.229(3)
Mn(2)-O(4)#2	2.200(3)		Mn(2)-O(9)#2	2.215(3)
		3		
Mn1-O(1)	2.1499(14)		Mn(1)-O(9)	2,2034(13)
Mn(1)-O(2)#1	2.1733(13)		Mn(1) - O(1) #2	2.1499(14)
Mn(1)-O(9)#2	2.2034(13)		Mn(1) - O(2) #3	2.1733(13)
	21203 ((13)	4		2.1,05(10)
Mn(1)-O(1)	2.109(2)	-	Mn(1)-O(13)	2.175(2)
Mn(1)-N(1)	2.253(2)		Mn(1)-O(12)#1	2.146(2)
Mn(1)-O(7)#2	2.363(2)		Mn(1)-O(11)#3	2.135(2)
		1		
O(1)-Mn(1)-O(13)	91.73(19)	1	O(1)-Mn(1)-O(14)	87.53(18)
O(1)-Mn(1)-O(6)#1	98.35(16)		O(1)-Mn(1)-O(4)#2	91.52(17)
O(1)-Mn(1)-O(9)#2	172.46(16)		O(13)-Mn(1)-O(14)	93.1(2)
O(6)#1-Mn(1)-O(13)	169.41(18)		O(4)#2-Mn(1)-O(13)	90.19(19)
O(9)#2-Mn(1)-O(13)	81.65(17)		O(6)#1-Mn(1)-O(14)	90.56(15)
O(4)#2-Mn(1)-O(14)	176.58(15)		O(9)#2-Mn(1)-O(14)	89.25(16)
O(4)#2-Mn(1)-O(6)#1	86.32(14)		O(6)#1-Mn(1)-O(9)#2	88.49(13)
O(4)#2-Mn(1)-O(9)#2	92.09(14)		O(2)-Mn(2)-O(15)	84.52(19)
O(2)-Mn(2)-O(5)#1	86.71(16)		O(2)-Mn(2)-O(10)#1	98.52(17)
O(2)-Mn(2)-O(4)#2	91.07(16)		O(2)-Mn(2)-O(6)#2	169.50(16)
O(5)#1-Mn(2)-O(15)	165.38(17)		O(10)#1-Mn(2)-O(15)	88.47(17)
O(4)#2-Mn(2)-O(15)	101.19(17)		O(6)#2-Mn(2)-O(15)	89.43(18)
O(5)#1-Mn(2)-O(10)#1	81.28(14)		O(4)#2-Mn(2)-O(5)#1	90.63(14)
O(5)#1-Mn(2)-O(6)#2	100.88(14)		O(4)#2-Mn(2)-O(10)#1	167.03(15)
O(6)#2-Mn(2)-O(10)#1	89.86(13)		O(4)#2-Mn(2)-O(6)#2	81.69(13)
		2		

* $R = \sum (F_{o} - F_{c}) / \sum (F_{o}), ** wR_{2} = \{ \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum (F_{o}^{2})^{2} \}^{1/2}.$

O(1)-Mn(1)-O(13)	89.61(12)	O(1)-Mn(1)-O(5)#1	87.27(11)
O(1)-Mn(1)-O(10)#1	100.96(12)	O(1)-Mn(1)-O(4)#2	90.21(11)
O(1)-Mn(1)-O(6)#2	168.81(12)	O(5)#1-Mn(1)-O(13)	163.34(12)
O(10)#1-Mn(1)-O(13)	83.61(12)	O(4)#2-Mn(1)-O(13)	106.48(12)
O(6)#2-Mn(1)-O(13)	85.41(11)	O(5)#1-Mn(1)-O(10)#1	80.94(11)
O(4)#2-Mn(1)-O(5)#1	89.90(11)	O(5)#1-Mn(1)-O(6)#2	100.30(10)
O(4)#2-Mn(1)-O(10)#1	165.12(11)	O(6)#2-Mn(1)-O(10)#1	88.46(11)
O(4)#2-Mn(1)-O(6)#2	81.63(10)	O(2)-Mn(2)-O(14)	87.43(15)
O(2)-Mn(2)-O(17)	90.09(12)	O(2)-Mn(2)-O(6)#1	93.88(11)
O(2)-Mn(2)-O(4)#2	89.57(11)	O(2)-Mn(2)-O(9)#2	173.78(12)
O(14)-Mn(2)-O(17)	96.03(14)	O(6)#1-Mn(2)-O(14)	177.14(13)
O(4)#2-Mn(2)-O(14)	90.20(13)	O(9)#2-Mn(2)-O(14)	86.51(14)
O(6)#1-Mn(2)-O(17)	86.52(11)	O(4)#2-Mn(2)-O(17)	173.75(11)
O(9)#2-Mn(2)-O(17)	89.17(11)	O(4)#2-Mn(2)-O(6)#1	87.28(10)
O(6)#1-Mn(2)-O(9)#2	92.24(11)	O(4)#2-Mn(2)-O(9)#2	91.84(11)
	3		
O(1)-Mn(1)-O(9)	92.02(6)	O(1)-Mn(1)-O(2)#1	95.75(5)
O(1)-Mn(1)-O(1)#2	180.00	O(1)-Mn(1)-O(9)#2	87.98(6)
O(1)-Mn(1)-O(2)#3	84.25(5)	O(2)#1-Mn(1)-O(9)	90.02(5)
O(1)#2-Mn(1)-O(9)	87.98(6)	O(9)-Mn(1)-O(9)#2	180.00
O(2)#3-Mn(1)-O(9)	89.98(5)	O(1)#2-Mn(1)-O(2)#1	84.25(5)
O(2)#1-Mn(1)-O(9)#2	89.98(5)	O(2)#1-Mn(1)-O(2)#3	180.00
O(1)#2-Mn(1)-O(9)#2	92.02(6)	O(1)#2-Mn(1)-O(2)#3	95.75(5)
O(2)#3-Mn(1)-O(9)#2	90.02(5)		
	4		
O(1)-Mn(1)-O(13)	87.05(10)	O(1)-Mn(1)-N(1)	90.32(9)
O(1)-Mn(1)-O(12)#1	165.01(9)	O(1)-Mn(1)-O(7)#2	85.66(8)
O(1)-Mn(1)-O(11)#3	91.61(9)	O(13)-Mn(1)-N(1)	177.01(11)
O(12)#1-Mn(1)-O(13)	84.40(10)	O(7)#2-Mn(1)-O(13)	90.75(10)
O(11)#3-Mn(1)-O(13)	92.90(10)	O(12)_#1-Mn(1)-N(1)	97.86(9)
O(7)#2-Mn(1)-N(1)	87.63(8)	O(11)#3-Mn(1)-N(1)	88.60(9)
O(7)#2-Mn(1)-O(12)#1	82.16(8)	O(11)#3-Mn(1)-O(12)#1	101.09(9)
O(7)#2-Mn(1)-O(11)#3	175.33(9)		

Symmetry Codes: For 1: #1=1-x, 1/2+y, 3/2-z; #2=x, 3/2-y, -1/2+z; For 2:#1=1-x, 1/2+y, 1/2-z; For 3: #-x,y,1/2-z; #2=-x,1-y,1-z; #3=x,1-y,1/2+z; For 4: #1=-1+x, y, 1+z; #2=x, y, 1+z; #3=1-x, 1-y, 1-z.

Table S4: Rate constant of the reactions

Material	$k (\min^{-1})$	R^2
1+NFZ	0.01912	0.98604
2+NFZ	0.03224	0.98284
3+NFZ	0.01895	0.98506
4+NFZ	0.02121	0.98672
BQ+NFZ-1	0.01797	0.99484
AO+NFZ-1	0.02212	0.98343
TBA+NFZ-1	0.02598	0.96644
1+CAP	0.00211	0.98298
2+CAP	0.00212	0.97502
3+CAP	0.00303	0.98719
4+CAP	0.00968	0.98382
1+ODZ	0.02253	0.98763
2+ODZ	0.02401	0.98645
3+ODZ	0.01761	0.97908
4+ODZ	0.02530	0.98327
1+OXY	0.02075	0.99370
2+OXY	0.01533	0.98010
3+OXY	0.01381	0.99529
4+OXY	0.00557	0.98716

1+SMT	0.00655	0.98039
2+SMT	0.00698	0.99164
3+SMT	0.00465	0.99138
4+SMT	0.00706	0.99172

Table S5: The percentage photodegradation

	Blank	1	2	3	4
САР	18.48%	15.74%	17.63%	16.30%	24.88%
NFZ	24.82%	76.29%	91.93%	77.29%	78.61%
ODZ	24.67%	78.93%	78.04%	72.05%	80.93%
ΟΧΥ	25.89%	64.97%	62.80%	32.18%	52.99%
SMT	49.01%	40.45%	40.25%	34.97%	43.21%

	20 mg/L	30 mg/L	40 mg/L
Concentration (NFZ)	86.42%	91.93%	81.23%
	10 mg/L	20 mg/L	30 mg/L
Dosage (CP 2)	86.90%	91.93%	81.79%
рН	pH=6	pH=7	pH=8

79.55%	91.93%	81.88%