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Basic concepts of band inversion

There are several ways we can define the concept of the band structure. The standard way is 
in terms of energies; we solve the Schrödinger equation of solids from the first principles (ab 
initio) to get both eigenstates and eigenvalues. The eigenvalues will form dense packages that span 
an energy window (i.e., band theory). If we label the energies by the corresponding wave vector k 
of the Bloch wavefunction, we can define bands as a function of k, En(k), where n is the band 
index. Considering the symmetry of the crystal, one can define the concept of the band differently. 
One can define a band by a vector containing the irreducible representations of the Bloch 
wavefunctions across the BZ. This is the definition of band representation. It should be noted that 
this is a global description of the band in reciprocal space, and thus, the Bloch wavefunction is not 
a well-suited basis to describe it. Instead, describing it in terms of localized orbitals in real space 
(i.e., Wannier functions) is preferred. This concept has led to the theory of topological quantum 
chemistry (TQC), which can be used to identify the topology of bands in materials. In this theory, 
the classification of topological materials is formulated by the elementary band representations 
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Fig. S1. Schematic of band structure and atomic limit. The atomic limit (lattice constant to infinity) results in many 
unbound atoms. As the lattice constant approaches the experimental value, the atomic orbitals become Bloch bands 
where they gain energy dispersion as a function of the Bloch momentum. (a) Normal band insulator: the orbital-
resolved electronic energy states of the valence band will always remain lower than that of the conduction band at all 
k-points throughout the BZ. (b) Nontrivial band insulator: the relative energy positions of the CB (red color) and VB 
(blue color) are reversed with respect to their atomic limit.
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and connectivity graphs (see Ref. [1] for more details). However, in the continuation of this 
section, we will use the first concept and examine the band inversion and the topology of the bands.

According to band theory, an insulator material is described by a set of filled electronic bands, 
i.e., valence bands, separated from an empty set of bands, i.e., conduction bands, by an energy gap. 
Although insulators can have different bandgap values, all the known normal band insulators 
belong to the same topologically trivial phase as the vacuum (from a topological point of view). 
This statement can be conceptualized by taking a conventional insulator and adiabatically 
changing its Hamiltonian (through external parameters) to the atomic limit. Note that the atomic 
limit means that the lattice constant (a) increases infinitely, leading to several unbound atoms. This 
process can be viewed as merely changing the energy gap value at each k-point without closing 
the energy gap. Such a process does not occur for TI. Therefore, these materials, which are not 
topologically equivalent to vacuum, are the intriguing topological phases of matter. In other words, 
an insulator is topologically nontrivial if it cannot be continued to any atomic limit without either 
closing a gap or breaking a symmetry [1].

The above conceptual process inspires a definition for band inversion. In general, band 
inversion is a phenomenon in the electronic band structure where the relative energy positions 
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Fig. S2. Schematic of atomic limit and band structure with/without spin-orbit coupling (SOC). (a-c) In the A+B- 
material, the VB and CB gain energy dispersion such that these two bands cross at certain TRIM points. When 
applying the SOC, an energy gap opens. (d-f) In this case, in the absence of SOC, there is no band crossing, and the 
SOC is responsible for both inverting the bands and opening the bandgap. (g) Mechanisms of band inversion 
occurrence. In addition to SOC, there are other inherent causes for band inversion. The scalar relativistic effect (SRE), 
crystal field effect (CFE), and chemical bonding effect (CBE) are among these effects that can lead directly or 
indirectly through the SOC to band inversion. There are other external effects (OEE) that can affect the occurrence of 
band inversions, such as pressure, stress, or impurities.
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between the conduction bands (CB) and valence (VB) bands in a solid are reversed with respect 
to those in its atomic limit. Therefore, any nontrivial topological material should have a finite 
number of band inversions because those that do not can be adiabatically tuned into their atomic 
limit without closing the gap. Many unbound atoms or ions will result if we consider an insulator 
and increase the lattice constant to infinity. Now gradually change the lattice constant from infinity 
to the experimental value. Each atomic level will form a Bloch band and gain dispersion as a 
function of Bloch-momentum (k). For a normal band insulator, the orbital-resolved electronic 
energy states (OREES) of VB will always remain lower than that of the OREES of CB at all k-
points throughout the BZ (Fig. S1(a)). As a result, a normal band insulator is topologically trivial. 
On the other hand, the OREES of VB energy becomes higher for a topological insulator than 
OREES of CB at some k-points (Fig. S1(b)). Hence, to restore the relative energy order between 
VB and CB as in the atomic limit, one has to close the bulk bandgap, which involves a quantum 
(topological) phase transition demonstrating the topological inequality between a topological 
insulator and the vacuum (atomic limit). Band inversion indicates that the material has been 
transferred to the topological phase but does not indicate to which topological class it has passed. 
Therefore, a topological phase is defined by the topological numbers or topological invariants 
calculated using the electronic wave function throughout the BZ. In fact, if a system has non-zero 
band inversions, one still needs to evaluate the topological invariants of the system to determine 
its topological nontriviality. 

Now, if other intrinsic effects are considered, it can be seen that such effects will lead to 
band inversion at a stage when the lattice constant approaches the experimental value. One of these 
effects is SOC. Hence, let us imagine a compound like A+B-. We label the lowest valence and 
conduction bands as B− and A+, respectively, as shown in Fig. S2(a). As we tune the lattice constant 
to the experimental value, the valence and conduction bands gain energy dispersion such that these 
two bands cross at a certain TRIM point, as shown in Fig. S2(b). In this case, in the vicinity of the 
TRIM point, where band-crossing occurs, the system gains energy to transfer the electron in the B 
atom back to the A atom. It is noteworthy that as the conduction and valence bands cross, they 
become degenerate at certain k points in the BZ. When the SOC is considered, it causes the 
crossing bands to hybridize and open a global bandgap (Fig. S2(c)). Therefore, the spin-orbit 
coupling is responsible only for opening the bandgap, and the band inversion has taken place 
before considering the SOC (see Fig. S2(b)). SnTe is a well-known example of this kind, where a 
band inversion between the Sn-p and Te-p orbitals is found even without including the SOC [2]. 

Now consider another case with a slight difference, as shown in Figs. S2(d-f). Before 
considering the SOC, no band crossing exists. After considering the SOC, both band inversion and 
opening of the insulating gap happen. Bi2Se3 is an example of this kind [3].

In addition to SOC, other inherent effects, such as the scalar relativistic effect (SRE), 
crystal field effect (CFE), and chemical bonding effect (CBE), are among the effects that can lead 
to band inversion directly or indirectly [4-6]. Besides, other external effects (OEE), such as 
pressure, stress, or impurities, can also lead to band inversion [5, 7, 8]. Depending on the material 
structure and its dimensions, each effect can help achieve a band inversion (see Fig. S2(g)). Thus, 
although band inversion cannot define any topological class rigorously, it is very suggestive of 



identifying novel topological materials for topological class and understanding the topological 
nature.
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Fig. S3. Band structures of the TiNI monolayer within HSE06 approach under different external uniaxial 
tension strain along x-axis strain without and with SOC.  
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Fig. S4. Band structures of the TiNI monolayer within HSE06 approach under different external uniaxial 
(a) compression and (b) tension strains along the y-axis without and with SOC.  
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Fig. S5. Band structures of the TiNI monolayer within the PBE0 approach under different external 
uniaxial (a) compression and (b) tension strains along the x-axis without and with SOC.
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Fig. S6. Band structures of the TiNI monolayer within the PBE0 approach under different external 
uniaxial (a) compression and (b) tension strains along the y-axis without and with SOC.  



Fig. S7. Phonon dispersion of TiNI monolayer under different external uniaxial (a) tension and (b) 
compression strains along the x-axis.
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Fig. S8. Phonon dispersion of TiNI monolayer under different external uniaxial (a) tension and (b) 
compression strains along the y-axis.
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Fig. S9. Band structures of the TiNI monolayer within the TB-mBJ approach under different external 
uniaxial compression strains along the (a) x-axis and (b)  y-axis and (b) tension strains along the (c) x-
axis and (d) y-axis with SOC.
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