Supplementary Information

Polarized coherent emission outside high-symmetry points of dye-coupled plasmonic lattices

Diego Piccotti,^a Mirko Trevisani,^a Giuseppe Pirruccio,^b Boris Kalinic,^a Tiziana Cesca,^{*a} and Giovanni Mattei^a

^a University of Padova, Department of Physics and Astronomy, NanoStructures Group, via Marzolo 8, I-35131 Padova, Italy.

E-mail: tiziana.cesca@unipd.it

^b Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico D.F. 01000, México

Figure S1 Set-up for angle-resolved extinction measurements.

Figure S2 Experimental complex refractive index (n, κ) of Au thin film.

Figure S3 Set-up for angle-resolved photoluminescence measurements.

Figure S4 Experimental extinction (E=1-T) maps of the Au-HNDA in (a) TE and (b) TM polarization along the Γ -M direction, in air (n=1).

Figure S5 FEM simulated extinction (E=1-T) map of the Au-HNDA in ethanol taken in TM polarization along the Γ -M direction.

Figure S6 (a) Experimental extinction (E=1-T) map and (b) FEM simulated reflectance (R) map of the SiO₂-HNDA in ethanol, for TM polarization along the Γ -M direction. The black lines are the Rayleigh anomalies (see main text), labeled with the corresponding Miller indexes.

Figure S7 FEM simulations. (a) Main geometrical parameters of the FEM model of a gold nanodome; the sketch shows the \hat{x}_z plane at y = 0. The same model was used for the silica nanodome. (b,c) Top-view ($\hat{x}y$, z = 80 nm) and (d,e) side-view ($\hat{y}z$, x = 0) of the maps of near-field enhancement factor in logarithmic scale, $\log(|\mathbf{E}|/E_0)$, for (b,d) the Au-HNDA and (c,e) the SiO₂-HNDA. The incident field is TE-polarized ($\mathbf{E}_0//\hat{y}$). (f,g) Side-view ($\hat{y}z$, x = 0) in linear scale of the maps of the \hat{z} component (perpendicular to the array plane) of the electric field E_z , normalized to the incident field E_0 , of (f) Au-HNDA and (g) SiO₂-HNDA. All the maps are simulated at the lasing emission condition ($\lambda = 723$ nm, emission angle 17° along the Γ -M direction).

Figure S8 Normalized absorption and emission spectra of Pyridine 2 in ethanol.

Figure S9 Angular scan along the Γ -M direction, of the 1.72 eV emission peak of sample Au-HNDA+Py2; the sample is excited at an angle of 50° with respect to the surface's normal, with a pump fluence of 1.4 mJ/cm². The gray curve is the Gaussian fit of the angular data.

Figure S10 PL measurements as a function of the pump fluence of the sample SiO₂-HNDA+Py2; the sample is excited at an angle of 50° with respect to the surface's normal and the emission is collected at 17° .

Figure S11 Angular scan along the Γ -M direction of the emission peak of sample SiO₂-HNDA+Py2; the sample was excited at an angle of 50° with respect to the surface's normal, with a pump fluence of 15.4 mJ/cm². The gray curve is the Gaussian fit of the angular data.

Figure S12 Angular emission map of Py2 dissolved in ethanol taken at an incidence angle of 50°, with a pump fluence of 15.4 mJ/cm².

Figure S13 (a) Interference pattern recorded from the Au-HNDA+Py2 sample with an excitation fluence of 0.4 mJ/cm² (below threshold). (b) Intensity profile of the interference pattern in (a). (d) Fringe visibility (dots) as a function of the optical path distance (OPD); the orange curve is the Gaussian fit of the visibility data.