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SI 1.  Details of the Finite-Element Model Implemented in COMSOL Multiphysics 
 

Numerical simulations were used to calculate the time- and potential-dependent electric 

potential, ϕ, and the concentration distribution, Ci of both the supporting electrolyte ions (i = K+ 

and NO3
-), and the redox species (Ru(NH3)6

3+ and Ru(NH3)6
2+; i = O and R, respectively) during 

voltammetry. Mass transport and electric potential are described by the Nernst-Planck and 

Poisson equations, respectively, eqns (2) and (4) in the main text. We assume that mass transport 

is by diffusion and migration only i.e. there is no convective transport and no ions can penetrate 

the compact layer and thus the electric potential within the compact layer is described by the 

Laplace equation, eqn (3) in the main text. 

Electroneutrality of the system is defined by eqn (S1).  

 M L 0     

where σM is the charge density on the metal electrode and σL is the charge density in the solution 

between x = 0 and x = L (see eqn. S17 for calculation of σL). 

The non-faradaic current, iC, given by eqn (10) in the main text, can be computed from the rate 

of change of σM with time. Equivalently, for voltammetry in which the potential is changed at a 

constant rate, iC can also be computed from the rate of change of σM with applied potential, E, 

which is dependent on the scan rate, v, see eqn. (10), 2nd part. 

Potential Waveform  

The cyclic voltammetry (CV) waveform, E(t), was applied in the COMSOL simulation using 

piecewise linear functions matching those used in the experiments.  Fig. S1 shows an example 

for a scan rate of 1 V/s. The waveform starts at 0 V vs Ag/AgCl and E(t) is scanned in the positive 

direction to 0.1 V, swept from 0.1 to -0.5 V and then back to 0.1 V.  
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Fig. S1 - Voltammetric waveform used in both the finite-element simulations and experimental 

measurements. This example is for a scan rate of 1 V/s.  

 

Model Parameters  

The diffusion coefficient of Ru(NH3)6
3+, DRu(III), was determined to be 7.5 ± 0.3 × 10-6 cm2/s 

from the steady-state voltammetric limiting current, ilim, for reduction of Ru(NH3)6
3+ at a 

14.5 ± 0.5 μm radius Pt microdisk electrode (Fig. S2). DRu(III) was computed from the expression 

for the diffusion-limited current to a microdisk electrode, ilim =  4naFDRu (III)CRu(III)*, where F is 

Faraday’s constant, CRu(III)* is the bulk concentration of Ru(NH3)6
3+, and n is the number of 

electrons transferred per redox species (n = 1). The radius, a, was measured using a Leica 

DM4000M optical microscope. The diffusion coefficient of Ru(NH3)6
2+, DRu(II), is assumed to 

be ~1.4 times larger than that of Ru(NH3)6
3+, based on previously reported measurements of this 

redox couple.1 

 



S4 
 

 

Fig. S2   Voltammetric response of a Pt microdisk electrode (14.5 ± 0.5 μm radius) in an aqueous 

solution containing 0.96 mM Ru(NH3)6Cl3 and 1.0 M KNO3. The solution was bubbled with Ar 

prior to the measurement to purge dissolved O2 from the solution.  Scan rate = 0.01 V/s.  

 

Mesh and Accuracy  

The Nernst-Planck and Poisson equations were solved for the one-dimensional model shown in 

Fig. S3. Boundary point 1 (BP1) corresponds to the electrode surface, BP2 to the interface 

between the inner and outer compact layers (x = x1), BP3 to the outer Helmholtz plane, which 

we also set as the plane of electron transfer (PET, x = x2), and BP4 to the position of the 

reference/counter electrode (x = 2.5 mm, also equal to the total width of the cell model, L).  There 

are a total of ~350 points in the mesh. The finest mesh elements are near BP3, where the element 

size is 1/20th of the Debye length (κ-1 ~0.3 nm in 1.0 M KNO3, calculated from the reciprocal of 

eqn (S2)), growing at 5% per element. 

 

1/22 2 *

S 0

i i
i

F z C

RT


 

 
 
 
 
 


  

In eqn (S2), κ is the reciprocal Debye length (m-1), zi and Ci
* are the charge and the bulk 

concentration (mol/m3) of species i respectively. R is the ideal gas constant (J mol-1 K-1), 

T ( = 293.15 K for all simulations in this work) is the temperature, εS is the dielectric constant of 

water (~80 at T = 293.15 K3), and F is Faraday’s constant (96,485 C mol-1). In the bulk solution 

between BP3 and BP4, the mesh grows coarser with the maximum element size being 1/50th of 
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the total width of the model (L = 2.5 mm). The equations were discretised using linear Lagrange 

elements. 

 

Fig. S3  Geometry and mesh used for finite-element simulations: a) the whole model (2.5 mm), 

and b) zoomed-in section of the compact layer-electrolyte interface (~1 nm). The green region 

corresponds to the 0.29 nm thick inner compact layer, the blue region corresponds to the 0.30 

nm thick outer compact layer, while the remaining region (black, 0.59 nm < x ≤ 2.5 mm) 

corresponds to the electrolyte solution. 

The accuracy of the simulations was confirmed by performing simulations with progressively 

finer meshes and comparing the results. We deemed the simulations to be sufficiently accurate 

when no appreciable changes were observed in the simulated results when using finer mesh 

elements or higher solver tolerances (as is the case with the mesh described above). 

 

Initial and Boundary Conditions  

The initial concentrations (t = 0 s) of each species within the electrolyte solution (domain 3; 

x > x2) were set to match those in the experiments as follows: 

 
*

Ru(III) Ru(III)( ,0)C x C   

 Ru(II)( ,0) 0C x    

a) 

b) 

BP1 BP2 

BP1 BP4 

Domain 1 Domain 2 

BP3 

Domain 3 

BP2 BP3 
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 elecK
( ,0)C x C    

 
3

*
elec Ru(III)NO

( ,0) 3C x C C     

where CRu(III) is the concentration of the oxidised Ru(NH3)6
3+ species, CRu(II) is the concentration 

of the reduced Ru(NH3)6
2+ species, CRu(III)

* is the initial/bulk concentration of the oxidised 

species and Celec is the initial/bulk concentration of 1:1 supporting electrolyte. NB: the 3CRu(III)
* 

in eqn (S6) represents the contribution of the counterion in the Ru(NH3)Cl3 salt. For simplicity 

we assume this to be a NO3
- salt, instead of adding a second non-electroactive anion species, Cl- 

to the simulation. 

At the PET (BP3), electron transfer is modelled using Butler-Volmer kinetics, as described by 

eqns (6) and (7) in the main article.  Mass conservation requires: 

 Ru(III) Ru(II)J J    

where Ji is the flux normal to the electrode surface at BP3. 

The supporting electrolyte ions (K+ and NO3
-), are not consumed in the reaction. Thus, at BP3 

 
3NOK

0 J J     

At BP4 (x = L), which represents the location of the reference/counter electrode in bulk solution, 

the species concentrations were fixed to their bulk values: 

 *
Ru(III) Ru(III)( , )C L t C   

 Ru(II) ( , ) 0C L t    

 elecK
( , )C L t C    

 3

*
elec Ru(III)NO

( , ) 3C L t C C  
 

 
 

The electric potential on BP4 was set to ϕ = 0 V, while the potential at BP1 was swept by setting 

ϕ = E(t). The CV waveform starts at E = 0 V, which is equal to the potential of zero charge, pzc, 

and is positive of E0 for the reduction of Ru(NH3)6
3+.  Thus, at t = 0, no electric double layer 

(EDL) exists, and no redox reaction is occurring.  For these initial conditions, the electric 

potential throughout the domain is given by:  

 ( , 0) 0 Vx    
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The electric potential at the internal boundaries between the inner Helmholtz, outer Helmholtz 

and solution phases have zero charge, satisfying continuity in ϕ and: 

 A B
0 A 0 B

d d

dx dx

 
      

where the subscripts A and B indicate the phase in which the quantity is evaluated. 
 

Calculating Current Density  

The total current density (jT) was calculated from the sum of the faradaic current (jF) and 

non-faradaic charging current (jC). The faradaic current density was calculated from the flux 

normal to the electrode (mol m-2 s-1) of Ru(NH3)6
3+ at the PET (BP3) by eqn (S15). 

 F Ru(III)j nFJ    

The non-faradaic current density is defined as the rate of change of the charge density at the 

metal electrode (BP1) with time, eqn (S16), and is evaluated at x = 0 on the inner compact layer 

side of the interface. 

 C 0 1

0

M

xt t
j

x
 

 







 



 





  
  

Under equilibrium conditions with no electron transfer and at a constant applied potential, the 

solution to the Poisson-Nernst-Planck equations is equivalent to the analytical Gouy-Chapman-

Stern (GCS) model, which can be used to check the accuracy of the numerical calculations. At 

slow scan rates, the Poisson Nernst-Planck equations solved by numerical simulations are in 

excellent agreement with the charging currents based on the capacitance computed from the GCS 

model (data not shown). 

The GCS model describes the electric potential and ion concentration distributions across the 

solution and the surface charge density on the metal electrode, eqn (10) of the main article, and 

the electrolyte solution, σL, eqn (S17). Eqn (S17) is derived from the equilibrium solution to the 

Poisson-Nernst-Planck equations,2  

 

1/2

* PET
S 0

( )
2 exp 1L

i

i
L i

z F
RT C

RT

 
  

    
      

   
   

with Ci
*
 having units of mol/m3. 
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Computational software and hardware 

Numerical simulations were formulated using COMSOL Multiphysics 5.6TM (COMSOL, 

Sweden) using the Chemical Reaction Engineering Module. The simulations were run on HP 

EliteDesk 800 desktop computer equipped with 64 GB RAM. They took ~ 1 minute per 

voltammogram to run with 1 mV sampling. 

COMSOL model report 

To aid in reproducing the simulations described above, an automatically generated COMSOL 

‘Model Report’ is included as a Supplementary Information file for (a) the electrostatic model 

and (b) the electrostatic model with ohmic potential drop compensation. 
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SI 2. The Influence of the Potential of Zero Charge on the CV Response 

The experiments corresponding to our simulations shown in the main article used a 2-mm 

diameter polycrystalline Au disk electrode instead of a single crystal. The pzc of gold is 

dependent on the crystallographic orientation.4 Consequently, the surface of the polycrystalline 

Au electrode will expose microcrystals with different pzc values. In the main text, we assume 

pzc = ϕref = 0 V for all simulations. To evaluate the impact of this assumption on our simulations, 

the formal potential (E0’) was varied from -0.2 V to 0.2 V vs ϕref (= pzc), while the potential 

window was maintained at E0’ ± 0.3 V (this is equivalent to varying the pzc while maintaining 

E0’). The results of these simulations are shown in Fig. S4. All other parameters are as stated in 

the caption to Fig. 2 in the main text, with k0 = 13.5 cm/s. As can be seen in Fig. S4a, the 

voltammetric response simulations at 1 V/s are independent of pzc - E0’, with curves for all five 

pzc values overlaying. However, the local concentrations of oxidised (solid) and reduced 

(dashed) species are strongly dependent on pzc - E0’, as can be seen in Fig. S4b, which plots their 

concentrations at the PET as a function of potential vs E0’. 

First we compare the extreme cases considered, E0’ = +0.2 V (purple) and E0’= -0.2 V (black), 

in which the potential is positive of the pzc for E - E0’ > -0.2 and > 0.2 V, respectively, to the 

diffusion only case (black curves Fig. 2c, main text). We see that for potentials negative of the 

pzc the local concentrations of both species are higher than those predicted in the diffusion model 

due to the positively charged redox couple (both forms) attracted to the negative charge on the 

metal electrode. At potentials positive of the pzc, the reverse is true, both redox species are 

depleted near the PET. Note, far negative of E0’ the oxidised form is difficult to resolve on this 

plot, due to its rapid reduction, yet in this region, its concentration is also enhanced vs the 

diffusion model when E < pzc and diminished when E > pzc. 

The potential drop across the compact layer (ϕM – ϕPET) vs E - E0’ for different pzc - E0’ is plotted 

in Fig. S4c. At E - E0’ = pzc there is no charge on the electrode, no electric field in the compact 

layer, and ϕM – ϕPET = 0 (dashed line). At potentials positive of the pzc we see ϕM – ϕPET > 0 V, 

indicating a positive charge on the metal and a positive electric field 
0

0
xx





 
  
 

 in the 

compact layer, while at potentials negative of pzc, the reverse is true. 
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Fig. S4  The simulated a) voltammetric response of 1.0 mM Ru(NH3)6
3+ in 1.0 M KNO3 when E0’ 

is set at -0.2 V (black), -0.1 (red), 0 V (blue), 0.1 V (green), and 0.2 V (purple). Simulation 

parameters: x1 = 0.29 nm, x2 = 0.59 nm, ε1 = 6, ε2 = 30, εs = 80 from reference 3 and 5, DRu(III) 

= 7.5×10-6 cm2/s and DRu(II) = 10.4 ×10-6 cm2/s, k0 = 13.5 cm/s, α =0.45, ν = 1 V/s, and 

T = 293.15 K.6 (b) Simulated concentrations of Ru(NH3)6
2+ (dashed) and Ru(NH3)6

3+ (solid) at 

the PET and (c) simulated potential drop across the compact layer (ϕM – ϕPET) as shown by the 

solid curves. NB: in part (a) all curves overlay and only the black curve is visible. 

As shown in Fig. S5, when the electron-transfer kinetics are slowed to quasi-reversible 

conditions, e.g. k0 = 0.1 cm/s at ν = 1 V/s, the voltammetric response depends on pzc - E0’. The 

voltammetric response is no longer independent of the structure of the EDL and the local 

concentration of the redox species. The peak-to-peak separation (ΔEp) increases from 62 mV 

when E0’ = -0.2 V to 86 mV when E0’ = +0.2 V. 

 

Fig. S5  The simulated voltammetric response of 1.0 mM Ru(NH3)6
3+ in 1.0 M KNO3 with quasi-

reversible electron transfer kinetics (k0 = 0.1 cm/s, ν = 1 V/s) for pzc = 0 V and E0’ set at: -0.2 

V (black), -0.1 (red), 0 V (blue), 0.1 V (green), and 0.2 V (purple). All other simulation 

parameters are as listed in Fig. S4. 
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SI 3.  Determining the Contribution of Electron-Transfer Kinetics to Peak Splitting Using 

the Diffusion Model 

The diffusion model assumes that all the applied potential is dropped across the compact layer 

(i.e. E = (ϕM - ϕPET) and ϕPET = 0 V), and that mass transport occurs only by diffusion. Fig. S6 

shows a voltammogram simulated using the diffusion model with k0 = 13.5 cm/s (as used 

throughout the main text). As shown, the voltammetric response is reversible (i.e. 

ΔEp = 2.218RT/nF = 56 mV when T = 293.15 K) for v ≤ 100 V/s and there is no capacitive 

contribution due to the absence of electrostatics in the model. At 1000 V/s, ΔEp increases 

minimally to 59 mV, reflecting a small impact of the electron-transfer kinetics on ΔEp at these 

scan rates. This result confirms the claims made in the main text that essentially all the peak 

splitting observed in the electrostatic model (when k0 = 13.5 cm/s) is due to effects other than 

the finite electron-transfer kinetics. 

 

Fig. S6  The simulated voltammetric response of 1.0 mM Ru(NH3)6
3+ in 1.0 M KNO3 assuming 

diffusional transport and no EDL.  Literature values of k0 = 13.5 cm/s and α = 0.45 were 

employed.6 Scan rate, ν, as in legend. The current density has been normalised by v1/2. Inset: 

zoomed-in cathodic peak.   
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SI 4.  Analytical Solution for the Nernstian Concentration of Redox Species at the PET 

We provided analytical expressions in the main text, eqns (13) and (14), that describe the 

concentrations of the redox species at the PET for a reversible electron-transfer reaction. Below, 

we provide the derivation of these expressions written in terms of O and R. 

We assume that mass transport is only by diffusion. The diffusional fluxes of O and R to the PET 

are as follows: 

 R R
R R RPET

PET R

( )

( )x
x

C C x PET
J D D

x t


 
  


  

 O

*
O O O

O OPET
PET R

( )

( )x
x

C C C x PET
J D D

x t


  
   


  

where δi(t) is the time-dependent diffusion layer thickness of species i. 

For planar diffusion, δi(t) is described by eqn (S20) 

  
1 2

( ) 2i it D t    

Substitution of eqn (S20) into eqns (S18) and (S19), yields: 

   R
R R1 2PET

PET
(2 )x

D
J C x

t
    

   *O
O O O1 2PET

PET
(2 )x

D
J C C x

t
      

Mass conservation at the PET requires: 

 O RPET PETx x
J J

 
    

Substituting eqns (S21) and (S22) into eqn (S23) yields eqn (S24) 

 
 

  
 

  
1 2 1 2

*O R
O O R1 2 1 2

PET PET
2 2

D D
C C x C x

t t
      

which can be rearranged to obtain the concentration of CR at the PET in terms of CO and CO* 

     
1 2

*O
R O O1 2

R

PET PET
D

C x C C x
D

      
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Combining eqn S25 with the Nernst equation (eqn S26)  

 
0' O

R

( PET)
ln

( PET)

C xRT
E E

nF C x


 


  

yields the potential dependence of CO at the PET, eqn (S27). This solution is substituted into the 

Nernst equation to determine the potential dependence of CR at the PET, eqn (S28).  

  
 

 

1 2 1 2 *
O R O

O 1 2 1 2
O R

exp( )
PET

1 exp( )

D D C
C x

D D




 


  

  
 
 

1 2 1 2 *
O R O

R 1 2 1 2
O R

PET
1 exp( )

D D C
C x

D D 
 


  

where  0'nF
E E

RT
   . Eqns (S27) and (S28) are equivalent to eqns (13) and (14) in the main 

text. 
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SI 5. Experimental and Simulated Voltammetric Background Responses in 1.0 M KNO3 

In simulations where only supporting electrolyte is present in the solution, the background 

charging current response, outside of the switching regions, overlay (within the width of a line 

on the scale shown) when normalised by scan rate and area to give the capacitance density 

(F/cm2) of the electrode material. This is shown in Fig. S7a using the electrostatic model for a 

2-mm diameter polycrystalline Au disk electrode in 1.0 M KNO3 solution. Whilst the time 

constant controlling the current decay, following potential switching at 0.1 V and -0.5 V, is 

constant, the current decay is more visible as the time scale of the scan decreases with increasing 

scan rate. Note, the normalised responses for experiments recorded in 1.0 M KNO3 using a 2-

mm diameter polycrystalline Au disk electrode (A = 0.0314 cm2) do not overlay, Fig. S7b, and 

exhibit a sloping background. We attribute these non-ideal features to leakage of the electrolyte 

between the Kel-F® insulator shroud and Au electrode. The consequence of a non-perfect 

electrode-insulator seal becomes more pronounced at slower scan rates.2   

 

Fig. S7  a) Simulated and b) experimental voltammetric responses of a 2-mm diameter polycrystalline 

Au disk electrode in 1.0 M KNO3 at varying scan rates (normalised to give capacitance density). All other 

parameters are as listed in the caption of Fig. 2 in the main article 
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SI 6. Simulating Positive Feedback Ohmic drop Compensation 
 

Uncompensated resistance between the working electrode and the reference electrode (x = L = 

2.5 mm) impacts the voltammetric response through the ohmic potential drop, which occurs from 

just outside of the EDL to the reference electrode (ϕL). Potentiostats typically possess the 

functionality to adjust the applied potential to compensate for the majority of the ohmic potential 

drop, such that the potential difference between the working electrode and the solution, just 

outside the EDL, is close to the time-dependent applied potential, E(t). The section below 

describes how ohmic potential drop compensation is included in our simulations, the results of 

which are presented in Fig. 5 of the main text. A COMSOL model report that includes ohmic 

potential drop compensation is provided as an additional Supplementary Information file. 

While the precise implementation of ohmic drop compensation in potentiostats depends on the 

electronic circuitry used, it is typically achieved through a positive feedback loop. Ohmic drop 

is continually estimated by multiplying the measured current (i) by the solution resistance (Ru). 

The feedback loop adjusts the applied potential by a proportion (e.g. 95%) of this estimated 

ohmic potential drop. These adjustments aim to maintain the potential difference between the 

reference and working electrode by applying the compensated potential difference, 

Ecomp(t) ~ E(t) + (iRu × f). Where f  the fraction of the iRu drop added back to the applied potential 

(the approximate sign indicates that  Ecomp(t) depends on the response time of the feedback loop). 

In a similar way to a potentiostat using a positive feedback loop, we include ohmic potential drop 

compensation within numerical simulations. Initially, we calculate the bulk conductivity (γ) of 

the electrolyte solution: 

 i i iF z u C     

where zi is the charge, ui is the mobility and, Ci is the bulk concentration of species i. The mobility 

of the ions in solution is calculated using the Nernst-Einstein relation: 

 
i i

i

z FD
u

RT
   

The solution resistance (Ru) is calculated as 

 u

L
R

A
   
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where A is the electrode area and L is the width of the cell, 2.5 mm. Note, in this calculation, we 

implicitly assume that the solution conductivity remains at its bulk value and that the electrode 

reaction does not alter this conductivity. This is generally true, except within the EDL.  However, 

since the thickness of the EDL is typically orders of magnitude smaller than 2.5 mm, it does not 

significantly contribute to the overall solution resistance.  

For Celec = 1.0 M, L = 2.5 mm, T = 293.15 K, 
K

D  = 2.0×10-5 cm2/s and 
3NO

D  = 1.9×10-5 cm2/s), 

γ and Ru are computed, respectively to be 14.9 S/cm (including K+, NO3
- and Ru(NH3)6

3+) and 

Ru = (1.67× 10-4) Ωm2/A, where A is the electrode area that defines the cross-section area of the 

prismatic rectangular cell that current passes through. 

To mimic the feedback loop we introduce a differential equation which tracks the ohmic drop 

through the variable ρ 

  u

d
k R i

dt


    

where k (a positive number, units s-1) is the gain parameter of the feedback loop which alters 

how quickly the feedback loop responds to changes in current. The initial value of ρ is set to 0 V. 

Substituting eqn (S31) and the current (i = (�� + ��)A) into eqn (S32) gives 

  C F

1d
k j j A

dt A






 
   

 
  

  C F

1
k j j 



 
   

 
  

where we observe that the electrode area (A) is eliminated, meaning that the expression is 

universal to planar electrodes represented by Fig. S3.  

Ecomp is described by 

 comp( ) ( )E t E t f     

It is applied as the potential on BP1 and is used as the electrode potential in the Butler-Volmer 

expression for electron transfer kinetics, eqns (6) and (7). 

Fig. S8 compares the response when using 95% (f = 0.95) ohmic potential drop compensation 

(red lines) with that when no compensation is applied (black lines). From the voltammograms 

shown in Fig. S8a we have selected potential values from the negatively and positively scanning 



S17 
 

sweeps corresponding to I) E = -0.200 V (negative direction) and II) E = -0.150 V (positive 

direction) respectively. The electric potential distribution across the domain (insets show 

potential within 3 nm of the electrode surface) with and without ohmic potential drop 

compensation are shown in Fig. 8b at E = -0.200 V and in Fig. 8c at E = -0.150 V.  

 

Fig. S8  a) CVs without (black) and with (red) 95% ohmic drop compensation at a scan rate of 

1000 V/s. Simulated electric potential distribution across the cell (inset: within 3 nm of the 

electrode) at b) E = - 0.2 V (cathodic) and c) E = -0.15 V (anodic) as labelled on part a 

respectively as I and II. All other parameters are as listed in the caption to Fig. S4. The curves 

in (a) are reproduced from Fig. 5a and b in the main text. 

In Fig. S8b the uncorrected potential applied to the electrode during the negative scanning 

portion of the CV is -0.200 V vs the reference electrode potential (= 0 V), black line. The value 

of  at the electrode surface (x = 0) is shown more clearly in the inset. However, the potential 

difference between the solution just outside the EDL (~ -0.042 V) and the metal (-0.200 V) is 

only ~ -0.158 V, which reflects the potential difference the electrode experiences when 

accounting for ohmic potential drop. In contrast the red line data shows that to account for the 

ohmic potential drop, the electrode must experience a corrected potential (red line) of -0.260 V 

vs the reference electrode potential. The potential difference between the solution just outside 

the EDL (~ -0.063 V) and the metal (-0.260 V) is now ~ -0.200 V.  

Fig. S8c shows the potential distribution from the positively scanning portion of the CV where 

the uncorrected potential is -0.150 V vs the reference electrode potential (black line), whilst the 

corrected potential is ~ -0.100 V vs the reference electrode potential (red line). In this case, an 

anodic current is flowing and thus the potential drop is of the opposite sign. In the compensated 

resistance case (red curve), the value of ~ -0.100V can be understood by noting in the region just 

outside the EDL to the reference electrode, ϕ increases by ~ 0.051 V, resulting in the desired 

potential difference (≈ -0.150 V).  
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When using 95% compensation (as in Fig. 5b and Fig. S8a) at 1000 V/s, ΔEp is ~ 66 mV which 

is slightly greater than the value expected in the diffusion-only case (~ 59 mV, see section SI 3). 

This difference is mostly due to the remaining 5% of the resistance that is not compensated. We 

see this in Fig. S9, which shows voltammetry with different values of f. Decreasing f to 0.90 

(= 90%) (Fig. S9a) increases ΔEp to 76 mV while increasing to 0.99 (= 99%) leads to 

ΔEp ~ 59 mV (Fig. S9c), which is equal to the diffusion model at 1000 V/s. However, other 

differences in the voltammetry are also apparent: the time constant decay, observed at the start 

of the scan and at the switching potentials, see Fig. 9d, is slower if 90% compensation (red) is 

applied compared to the 95% compensation (black). At 99% compensation (blue), the time-

constant delay is even shorter, however, there are undesirable oscillating features near the 

switching potentials. This behaviour is known as “ringing” and is also seen experimentally when 

high values of f are employed.7 This sign of instability in the feedback loop is known as 

“overcompensation” and is the reason why 100% of the ohmic potential drop cannot be 

compensated. 

 

Fig. S9  Simulated voltammograms with a) 90% b) 95% and c) 99% ohmic drop compensation 

at a scan rate of 1000 V/s using a gain setting of 1×108 as described in SI 6. d) zoomed in section 

at the positive switching potential corresponding to 90% (black), 95%, (red) and 99% (blue) 

ohmic drop compensation. All other parameters are as listed in the caption to Fig. S4.
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SI 7. Influence of the Charge of the Redox Species (z/z-1) on the Voltammetric Response 

When the electrostatic model is applied to a system which has fast electron transfer kinetics 

(e.g. k0 = 13.5 cm/s), the voltammetric response is independent of the EDL structure and the 

charge on the redox species, z and z-1, for O and R, respectively. As discussed in the main 

article (section Why does the EDL Have No Effect on the CV response of Reversible Redox 

Couples?) this is due to an equilibrium existing between the concentration of the redox species 

at the PET and in solution just outside the EDL, which is maintained at the scan rates in this 

work. However, the local concentration of the redox species is dependent on the sign and 

magnitude of the redox species charge. Fig. S10 shows the concentration of the O (solid) and 

R (dashed) species adjacent to the electrode surface for differently charged redox pairs on the 

(i) ~ μm scale of the diffuse layer and the (ii) ~ nm scale of the EDL at (a) E = +0.1 V, (b) E = 

-0.1 V, (c) E = E0’ = -0.173 V and (d) E = -0.3 V; ν = 1 V/s. The EDL is on the order of ~3 nm, 

outside of this the concentration distribution is not dependent on the charge of the redox species 

as can be seen on the ~ μm length scale. In contrast on the ~ nm length scales the concentration 

is dependent on the charge of the redox species. For example, Fig. S10 aii shows that at E = 

0.1 V there is an accumulation of the negatively charged O2- (solid green) species at the 

electrode surface but a depletion of O3+ (solid black), which is due to anion accumulation/cation 

depletion in the EDL, to balance the positive charge on the electrode. The opposite is true at 

negative potentials (parts b-d). 
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Fig. S10   Simulated concentration distribution across solution of Oz dashed) and Rz-1 (solid) 

redox species for a 1e outer-sphere redox process with varying charges (z/z-1). The charges 

include those of the redox couple used in this work 3+/2+ (black) in addition to +1/0 (red), 0/-

1 (blue) and -2/-3 (green). The concentration distributions are reported on the cathodic scan 

at potential values a) E = 0.1 V b) E = -0.1 V, c) E = E0’ = -0.173 V and d) E = -0.3 V at 1 V/s. 

Note: part d is on a different scale. All other parameters are as listed in the caption of Fig. S4. 
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